{"title":"The molecular mechanisms of drug resistance of glioblastoma. Part 3. Differentiation and apoptosis of glioblastoma cells","authors":"A. Chernov, E. Galimova, O. Shamova","doi":"10.17816/maj83598","DOIUrl":null,"url":null,"abstract":"Glioblastomas are one of the most malignant and frequent human tumors, characterized by rapid growth, metastasis, resistance to therapy and the formation of relapses. The formation of multidrug resistance mechanisms in glioblastomas cells is often combined with inhibition of cell death and differentiation pathways and prevents an increase in the effectiveness of therapy in this group of patients. The review examines the relationship of molecular mechanisms of multidrug resistance with differentiation and apoptosis of glioblastomas with an emphasis on identifying new targets among proteins, microRNAs, suppressor genes, and oncogenes.","PeriodicalId":342669,"journal":{"name":"Medical academic journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical academic journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/maj83598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastomas are one of the most malignant and frequent human tumors, characterized by rapid growth, metastasis, resistance to therapy and the formation of relapses. The formation of multidrug resistance mechanisms in glioblastomas cells is often combined with inhibition of cell death and differentiation pathways and prevents an increase in the effectiveness of therapy in this group of patients. The review examines the relationship of molecular mechanisms of multidrug resistance with differentiation and apoptosis of glioblastomas with an emphasis on identifying new targets among proteins, microRNAs, suppressor genes, and oncogenes.