Semantics Accommodated K-Anonymization (SAKA) Technique for Assorted Data

K. Prasad, A. Pravin, T. Jacob, R. Rajakumar
{"title":"Semantics Accommodated K-Anonymization (SAKA) Technique for Assorted Data","authors":"K. Prasad, A. Pravin, T. Jacob, R. Rajakumar","doi":"10.1109/ICPC2T53885.2022.9776664","DOIUrl":null,"url":null,"abstract":"Techniques approaching k-anonymity for shielding the mini data privacy over data mining. Mini gatherings and abstraction are two conventional techniques for deploying the k-anonymity method. However, the above two methodologies lead to major errors over the anonymity of combined small data gathering. To approach this problem, we propose an efficient and new anonymity method SAKA that accommodates extra semantics than abstraction and mini data gatherings that can handle combined small data combinations. SAKA is the abbreviation for Semantics Accommodated K-Anonymity technique implied for anonymization of assorted data. The concept of SAKA is to merge the mean assorted vector of arithmetic data with abstraction values of classified data as a grouping centroid. It uses its epitome of tuples along with its equivalent clusters. Here we propose efficient algorithms to anonymize assorted data. An empirical result proves that SAKA can anonymize the assorted mini data persuasively and the algorithm implemented will provide good rapport between the quality of data and effectiveness of the algorithm thus it correlates anonymization algorithms with anonymous data.","PeriodicalId":283298,"journal":{"name":"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC2T53885.2022.9776664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Techniques approaching k-anonymity for shielding the mini data privacy over data mining. Mini gatherings and abstraction are two conventional techniques for deploying the k-anonymity method. However, the above two methodologies lead to major errors over the anonymity of combined small data gathering. To approach this problem, we propose an efficient and new anonymity method SAKA that accommodates extra semantics than abstraction and mini data gatherings that can handle combined small data combinations. SAKA is the abbreviation for Semantics Accommodated K-Anonymity technique implied for anonymization of assorted data. The concept of SAKA is to merge the mean assorted vector of arithmetic data with abstraction values of classified data as a grouping centroid. It uses its epitome of tuples along with its equivalent clusters. Here we propose efficient algorithms to anonymize assorted data. An empirical result proves that SAKA can anonymize the assorted mini data persuasively and the algorithm implemented will provide good rapport between the quality of data and effectiveness of the algorithm thus it correlates anonymization algorithms with anonymous data.
分类数据语义适应k -匿名化(SAKA)技术
接近k-匿名的数据挖掘中保护小数据隐私的技术。迷你集合和抽象是部署k-匿名方法的两种传统技术。然而,上述两种方法在组合小数据收集的匿名性上导致了重大错误。为了解决这个问题,我们提出了一种高效的新匿名方法SAKA,它可以容纳额外的语义,而不是抽象和可以处理组合小数据组合的迷你数据集合。SAKA是语义适应k -匿名技术的缩写,用于对分类数据进行匿名化。SAKA的概念是将算术数据的平均分类向量与分类数据的抽象值合并为分组质心。它使用元组的缩影以及等价的簇。在这里,我们提出了一种有效的算法来匿名化分类数据。实证结果表明,SAKA能够令人信服地对分类的小数据进行匿名化,所实现的算法在数据质量和算法有效性之间提供了良好的关系,从而将匿名化算法与匿名数据联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信