Scheduling Strategies for Sparse Cholesky Factorization on a Shared Virtual Memory Parallel Computer

M. Hahad, J. Erhel, T. Priol
{"title":"Scheduling Strategies for Sparse Cholesky Factorization on a Shared Virtual Memory Parallel Computer","authors":"M. Hahad, J. Erhel, T. Priol","doi":"10.1109/ICPP.1994.177","DOIUrl":null,"url":null,"abstract":"To solve a given problem on a distributed memory parallel computer (DMPC), the message passing programming model involves distributing both the data and the computations among the processors. While this can be easily feasible for well structured problems, it can become fairly hard for unstructured ones, like sparse matrix computations, unless you use some runtime support. In this paper, we consider a relatively new approach to implementing the Cholesky factorization on a DMPC, by using a shared virtual memory (SVM). The abstraction of a shared memory on top of a distributed memory allows us to introduce a large-grain factorization algorithm, synchronized with events. Experiments conducted so far show that some scheduling techniques enhance not only the parallelism but the SVM behavior as well, allowing interesting results.","PeriodicalId":162043,"journal":{"name":"1994 International Conference on Parallel Processing Vol. 3","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 International Conference on Parallel Processing Vol. 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1994.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To solve a given problem on a distributed memory parallel computer (DMPC), the message passing programming model involves distributing both the data and the computations among the processors. While this can be easily feasible for well structured problems, it can become fairly hard for unstructured ones, like sparse matrix computations, unless you use some runtime support. In this paper, we consider a relatively new approach to implementing the Cholesky factorization on a DMPC, by using a shared virtual memory (SVM). The abstraction of a shared memory on top of a distributed memory allows us to introduce a large-grain factorization algorithm, synchronized with events. Experiments conducted so far show that some scheduling techniques enhance not only the parallelism but the SVM behavior as well, allowing interesting results.
共享虚拟内存并行计算机稀疏Cholesky分解调度策略
为了解决分布式内存并行计算机(DMPC)上的给定问题,消息传递编程模型涉及到在处理器之间分配数据和计算。虽然这对于结构良好的问题很容易实现,但对于非结构化的问题(如稀疏矩阵计算)可能会变得相当困难,除非您使用一些运行时支持。在本文中,我们考虑了一种在DMPC上实现Cholesky分解的相对较新的方法,即使用共享虚拟内存(SVM)。在分布式内存之上的共享内存的抽象允许我们引入与事件同步的大粒度分解算法。迄今为止的实验表明,一些调度技术不仅增强了并行性,而且还增强了支持向量机的行为,从而产生了有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信