Object Detection Techniques: A Comparison

Priyanka Malhotra, Ekansh Garg
{"title":"Object Detection Techniques: A Comparison","authors":"Priyanka Malhotra, Ekansh Garg","doi":"10.1109/ICSSS49621.2020.9202254","DOIUrl":null,"url":null,"abstract":"Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object detection, a subset to computer vision is one of the prominent techniques in this area of research. Object detection is basically an algorithm based on either machine learning or deep learning approaches employed for classification of elements in diverse classes and localization in the image. This paper provides a comparison among the three prominent approaches to achieve object detection. R-CNN, Fast R-CNN, YOLO are the techniques in the trend which facilitates the developer in accomplishing the task of detecting an object in the image. These techniques train and compute the parameters of the model in reduced hence increase performance as compared to the traditional object detection techniques.","PeriodicalId":286407,"journal":{"name":"2020 7th International Conference on Smart Structures and Systems (ICSSS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Smart Structures and Systems (ICSSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSS49621.2020.9202254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object detection, a subset to computer vision is one of the prominent techniques in this area of research. Object detection is basically an algorithm based on either machine learning or deep learning approaches employed for classification of elements in diverse classes and localization in the image. This paper provides a comparison among the three prominent approaches to achieve object detection. R-CNN, Fast R-CNN, YOLO are the techniques in the trend which facilitates the developer in accomplishing the task of detecting an object in the image. These techniques train and compute the parameters of the model in reduced hence increase performance as compared to the traditional object detection techniques.
目标检测技术:比较
计算机视觉是一种旨在通过数字图像和视频在更高层次上对现实世界进行数字感知的技术。目标检测是计算机视觉的一个子集,是该领域研究的重要技术之一。物体检测基本上是一种基于机器学习或深度学习方法的算法,用于对不同类别的元素进行分类并在图像中进行定位。本文对实现目标检测的三种主要方法进行了比较。R-CNN、Fast R-CNN、YOLO是目前发展趋势中的技术,它们可以帮助开发人员完成图像中物体的检测任务。与传统的目标检测技术相比,这些技术以更低的速度训练和计算模型的参数,从而提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信