Linwei Wang, Heye Zhang, Ken C. L. Wong, Huafeng Liu, P. Shi
{"title":"Electrocardiographic simulation on personalised heart-torso structures using coupled meshfree-BEM platform","authors":"Linwei Wang, Heye Zhang, Ken C. L. Wong, Huafeng Liu, P. Shi","doi":"10.1504/IJFIPM.2009.027591","DOIUrl":null,"url":null,"abstract":"The foremost premise for the success of noninvasive volumetric myocardial Transmembrane (TMP) imaging from Body Surface Potential (BSP) recordings is a realistic yet efficient TMP-to-BSP mapping model that balances model accuracy with reconstruction feasibility. This papers presents a novel coupled meshfree-BEM platform to this forward electrocardiographic modelling. Its numerical accuracy and convergence is quantitatively assessed against analytical solutions on a synthetic geometry. Electrocardiographic simulations of various cardiac conditions on personalised heart-torso structures are consistent with existent experimental studies. In further real data validations on three post myocardial infarction patients, simulated BSP exhibit high accuracy compared to measured BSP.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2009.027591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The foremost premise for the success of noninvasive volumetric myocardial Transmembrane (TMP) imaging from Body Surface Potential (BSP) recordings is a realistic yet efficient TMP-to-BSP mapping model that balances model accuracy with reconstruction feasibility. This papers presents a novel coupled meshfree-BEM platform to this forward electrocardiographic modelling. Its numerical accuracy and convergence is quantitatively assessed against analytical solutions on a synthetic geometry. Electrocardiographic simulations of various cardiac conditions on personalised heart-torso structures are consistent with existent experimental studies. In further real data validations on three post myocardial infarction patients, simulated BSP exhibit high accuracy compared to measured BSP.