Multi-label Connectionist Temporal Classification

Curtis Wigington, Brian L. Price, Scott D. Cohen
{"title":"Multi-label Connectionist Temporal Classification","authors":"Curtis Wigington, Brian L. Price, Scott D. Cohen","doi":"10.1109/ICDAR.2019.00161","DOIUrl":null,"url":null,"abstract":"The Connectionist Temporal Classification (CTC) loss function [1] enables end-to-end training of a neural network for sequence-to-sequence tasks without the need for prior alignments between the input and output. CTC is traditionally used for training sequential, single-label problems; each element in the sequence has only one class. In this work, we show that CTC is not suitable for multi-label tasks and we present a novel Multi-label Connectionist Temporal Classification (MCTC) loss function for multi-label, sequence-to-sequence classification. Multi-label classes can represent meaningful attributes of a single element; for example, in Optical Music Recognition (OMR), a music note can have separate duration and pitch attributes. Our approach achieves state-of-the-art results on Joint Handwritten Text Recognition and Name Entity Recognition, Asian Character Recognition, and OMR.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The Connectionist Temporal Classification (CTC) loss function [1] enables end-to-end training of a neural network for sequence-to-sequence tasks without the need for prior alignments between the input and output. CTC is traditionally used for training sequential, single-label problems; each element in the sequence has only one class. In this work, we show that CTC is not suitable for multi-label tasks and we present a novel Multi-label Connectionist Temporal Classification (MCTC) loss function for multi-label, sequence-to-sequence classification. Multi-label classes can represent meaningful attributes of a single element; for example, in Optical Music Recognition (OMR), a music note can have separate duration and pitch attributes. Our approach achieves state-of-the-art results on Joint Handwritten Text Recognition and Name Entity Recognition, Asian Character Recognition, and OMR.
多标签联结时间分类
Connectionist Temporal Classification (CTC)损失函数[1]使神经网络能够端到端训练序列到序列的任务,而不需要在输入和输出之间进行事先对齐。CTC传统上用于训练顺序的单标签问题;序列中的每个元素只有一个类。在这项工作中,我们证明了CTC不适合多标签任务,并提出了一种新的多标签连接时间分类(MCTC)损失函数,用于多标签,序列到序列分类。多标签类可以表示单个元素的有意义的属性;例如,在光学音乐识别(OMR)中,一个音符可以有单独的持续时间和音高属性。我们的方法在联合手写文本识别和名称实体识别、亚洲字符识别和OMR方面取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信