Research on 3D gesture recognition in virtual maintenance

Yuling Yan, Minye Chen, Xiaojie Cao
{"title":"Research on 3D gesture recognition in virtual maintenance","authors":"Yuling Yan, Minye Chen, Xiaojie Cao","doi":"10.1145/3290420.3290423","DOIUrl":null,"url":null,"abstract":"In the process of virtual maintenance training, in order to achieve more natural human-computer interaction and enable trainees get the best immersion, it is particularly important to recognize 3D gestures in the real environment. By analyzing the development status of today's three-dimensional gesture recognition technology, gesture recognition device Leap Motion Controller is used to collect gestures in virtual maintenance training, and simulation experiments are carried out by SVM and PNN algorithm. The results show that the static gesture recognition rate of both algorithms can reach 100%, but SVM has a higher computing efficiency. The optimized PNN can achieve higher recognition rate for dynamic gestures, and the processing efficiency after PCA processing is higher.","PeriodicalId":259201,"journal":{"name":"International Conference on Critical Infrastructure Protection","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Critical Infrastructure Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290420.3290423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the process of virtual maintenance training, in order to achieve more natural human-computer interaction and enable trainees get the best immersion, it is particularly important to recognize 3D gestures in the real environment. By analyzing the development status of today's three-dimensional gesture recognition technology, gesture recognition device Leap Motion Controller is used to collect gestures in virtual maintenance training, and simulation experiments are carried out by SVM and PNN algorithm. The results show that the static gesture recognition rate of both algorithms can reach 100%, but SVM has a higher computing efficiency. The optimized PNN can achieve higher recognition rate for dynamic gestures, and the processing efficiency after PCA processing is higher.
虚拟维修中的三维手势识别研究
在虚拟维修培训过程中,为了实现更自然的人机交互,使学员获得最佳的沉浸感,在真实环境中识别3D手势显得尤为重要。通过分析当今三维手势识别技术的发展现状,利用手势识别设备Leap Motion Controller对虚拟维修训练中的手势进行采集,并采用SVM和PNN算法进行仿真实验。结果表明,两种算法的静态手势识别率均可达到100%,但SVM的计算效率更高。优化后的PNN对动态手势的识别率更高,PCA处理后的处理效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信