On the PDF of the square of constrained minimal singular value for robust signal recovery analysis

O. James
{"title":"On the PDF of the square of constrained minimal singular value for robust signal recovery analysis","authors":"O. James","doi":"10.1109/ECS.2015.7124876","DOIUrl":null,"url":null,"abstract":"In compressed sensing, the l1-constrained minimal singular value (l1-CMSV) of an encoder is used for analyzing (theoretically) the robustness of decoders against noise. In this paper, we show that for random encoders, the square of the l1-CMSV (S-CMSV) is a random variable. And, for the Gaussian encoders, the S-CMSV admits a simple, closed-form probability and a cumulative distribution functions. We illustrate the benefits of these distributions for analyzing the robustness of various decoders. In particular, we interpret the existing theoretical robustness results of the decoders such as the basis pursuit in terms of the maximum possible undersampling.","PeriodicalId":202856,"journal":{"name":"2015 2nd International Conference on Electronics and Communication Systems (ICECS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Electronics and Communication Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECS.2015.7124876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In compressed sensing, the l1-constrained minimal singular value (l1-CMSV) of an encoder is used for analyzing (theoretically) the robustness of decoders against noise. In this paper, we show that for random encoders, the square of the l1-CMSV (S-CMSV) is a random variable. And, for the Gaussian encoders, the S-CMSV admits a simple, closed-form probability and a cumulative distribution functions. We illustrate the benefits of these distributions for analyzing the robustness of various decoders. In particular, we interpret the existing theoretical robustness results of the decoders such as the basis pursuit in terms of the maximum possible undersampling.
基于约束最小奇异值平方的鲁棒信号恢复分析
在压缩感知中,编码器的l1约束最小奇异值(l1-CMSV)用于(理论上)分析解码器对噪声的鲁棒性。本文证明了对于随机编码器,11 - cmsv (S-CMSV)的平方是一个随机变量。并且,对于高斯编码器,S-CMSV允许一个简单的,封闭形式的概率和累积分布函数。我们说明了这些分布对分析各种解码器的鲁棒性的好处。特别是,我们根据最大可能欠采样来解释解码器的现有理论鲁棒性结果,例如基追踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信