PowerChief

Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan, Lingjia Tang, Jason Mars
{"title":"PowerChief","authors":"Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan, Lingjia Tang, Jason Mars","doi":"10.1145/3079856.3080224","DOIUrl":null,"url":null,"abstract":"Modern user facing applications consist of multiple processing stages with a number of service instances in each stage. The latency profile of these multi-stage applications is intrinsically variable, making it challenging to provide satisfactory responsiveness. Given a limited power budget, improving the end-to-end latency requires intelligently boosting the bottleneck service across stages using multiple boosting techniques. However, prior work fail to acknowledge the multi-stage nature of user-facing applications and perform poorly in improving responsiveness on power constrained CMP, as they are unable to accurately identify bottleneck service and apply the boosting techniques adaptively. In this paper, we present PowerChief, a runtime framework that 1) provides joint design of service and query to monitor the latency statistics across service stages and accurately identifies the bottleneck service during runtime; 2) adaptively chooses the boosting technique to accelerate the bottleneck service with improved responsiveness; 3) dynamically reallocates the constrained power budget across service stages to accommodate the chosen boosting technique. Evaluated with real world multi-stage applications, PowerChief improves the average latency by 20.3× and 32.4× (99% tail latency by 13.3× and 19.4×) for Sirius and Natural Language Processing applications respectively compared to stage-agnostic power allocation. In addition, for the given QoS target, PowerChief reduces the power consumption of Sirius and Web Search applications by 23% and 33% respectively over prior work.","PeriodicalId":117819,"journal":{"name":"Proceedings of the 44th Annual International Symposium on Computer Architecture","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079856.3080224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modern user facing applications consist of multiple processing stages with a number of service instances in each stage. The latency profile of these multi-stage applications is intrinsically variable, making it challenging to provide satisfactory responsiveness. Given a limited power budget, improving the end-to-end latency requires intelligently boosting the bottleneck service across stages using multiple boosting techniques. However, prior work fail to acknowledge the multi-stage nature of user-facing applications and perform poorly in improving responsiveness on power constrained CMP, as they are unable to accurately identify bottleneck service and apply the boosting techniques adaptively. In this paper, we present PowerChief, a runtime framework that 1) provides joint design of service and query to monitor the latency statistics across service stages and accurately identifies the bottleneck service during runtime; 2) adaptively chooses the boosting technique to accelerate the bottleneck service with improved responsiveness; 3) dynamically reallocates the constrained power budget across service stages to accommodate the chosen boosting technique. Evaluated with real world multi-stage applications, PowerChief improves the average latency by 20.3× and 32.4× (99% tail latency by 13.3× and 19.4×) for Sirius and Natural Language Processing applications respectively compared to stage-agnostic power allocation. In addition, for the given QoS target, PowerChief reduces the power consumption of Sirius and Web Search applications by 23% and 33% respectively over prior work.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信