Grain boundary passivation with small polar molecules for photovoltaics

Wentao Wang, Lei Wang, Fude Liu
{"title":"Grain boundary passivation with small polar molecules for photovoltaics","authors":"Wentao Wang, Lei Wang, Fude Liu","doi":"10.1109/PVSC.2011.6186240","DOIUrl":null,"url":null,"abstract":"Grain boundaries (GBs) play a major role in determining the device performance of in particular polycrystalline thin film solar cells including Si, CdTe and CIGS. Hydrogen passivation has been traditionally applied to passivate the defects at GBs. However, hydrogenated films such as amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) are subject to light-induced degradation effects. In this study on multicrystalline (mc)-Si wafers, we found an excellent correlation between the grain misorientation and the corresponding electrical resistivity across grain boundaries. In particular, the charge transport across GBs was greatly enhanced after the wafers were properly treated in acetonitrile (CH3CN). The results were explained to be due to the more effective charge neutralization of polar molecules on GBs. These findings may help us achieve high-quality materials at low cost for high-efficient solar cells by improving the carrier transport and minimizing the carrier recombination. We also believe that this study will help us with a deeper understanding on GBs and their behaviors for the applications not only in photovoltaics, but also in other solid-state devices such as thin-film transistors.","PeriodicalId":373149,"journal":{"name":"2011 37th IEEE Photovoltaic Specialists Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 37th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2011.6186240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grain boundaries (GBs) play a major role in determining the device performance of in particular polycrystalline thin film solar cells including Si, CdTe and CIGS. Hydrogen passivation has been traditionally applied to passivate the defects at GBs. However, hydrogenated films such as amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) are subject to light-induced degradation effects. In this study on multicrystalline (mc)-Si wafers, we found an excellent correlation between the grain misorientation and the corresponding electrical resistivity across grain boundaries. In particular, the charge transport across GBs was greatly enhanced after the wafers were properly treated in acetonitrile (CH3CN). The results were explained to be due to the more effective charge neutralization of polar molecules on GBs. These findings may help us achieve high-quality materials at low cost for high-efficient solar cells by improving the carrier transport and minimizing the carrier recombination. We also believe that this study will help us with a deeper understanding on GBs and their behaviors for the applications not only in photovoltaics, but also in other solid-state devices such as thin-film transistors.
光伏小极性分子晶界钝化
晶界(GBs)在决定器件性能方面起着重要作用,特别是多晶薄膜太阳能电池,包括Si, CdTe和CIGS。传统上采用氢钝化方法来钝化GBs缺陷。然而,非晶硅(a-Si:H)和微晶硅(μc-Si:H)等氢化膜受到光诱导降解的影响。在对多晶硅晶片的研究中,我们发现晶粒取向偏差与相应的晶界电阻率之间存在良好的相关性。特别是,在乙腈(CH3CN)中适当处理后,晶圆上的电荷输运大大增强。结果被解释为由于极性分子在gb上更有效的电荷中和。这些发现可能有助于我们通过改善载流子运输和减少载流子重组,以低成本获得高质量的高效太阳能电池材料。我们也相信这项研究将有助于我们更深入地了解gb及其行为,不仅在光伏领域,而且在其他固态器件如薄膜晶体管中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信