Satellite Image Segmentation of Gold Exploration Areas in the Amazon Rainforest Using U-Net

José M. C. Boaro, Pedro Thiago Cutrim dos Santos, A. Serra, Venicius Rego, Carlos Vinicios Martins, Geraldo Braz Júnior
{"title":"Satellite Image Segmentation of Gold Exploration Areas in the Amazon Rainforest Using U-Net","authors":"José M. C. Boaro, Pedro Thiago Cutrim dos Santos, A. Serra, Venicius Rego, Carlos Vinicios Martins, Geraldo Braz Júnior","doi":"10.1109/IHTC53077.2021.9698927","DOIUrl":null,"url":null,"abstract":"Gold exploration activity in the Amazon rainforest area has been increasing recently. Explorations of this nature have direct consequences on fauna, flora, and the lives of indigenous people living around these areas. In an attempt to map and detect land usage, among other activities using satellite images, several approaches of machine learning and artificial intelligence have been explored, both classical and modern. This paper develops a method for segmentation of gold exploration areas using U-Net, on high-resolution satellite images, estimating the most appropriate loss, optimization function, and training batch size for the task. The results achieved for segmentation obtained the values of 91.29% for precision, 74.64% recall, 76.60% f1-score, and 98.34% accuracy.","PeriodicalId":372194,"journal":{"name":"2021 IEEE International Humanitarian Technology Conference (IHTC)","volume":"68 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Humanitarian Technology Conference (IHTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHTC53077.2021.9698927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gold exploration activity in the Amazon rainforest area has been increasing recently. Explorations of this nature have direct consequences on fauna, flora, and the lives of indigenous people living around these areas. In an attempt to map and detect land usage, among other activities using satellite images, several approaches of machine learning and artificial intelligence have been explored, both classical and modern. This paper develops a method for segmentation of gold exploration areas using U-Net, on high-resolution satellite images, estimating the most appropriate loss, optimization function, and training batch size for the task. The results achieved for segmentation obtained the values of 91.29% for precision, 74.64% recall, 76.60% f1-score, and 98.34% accuracy.
基于U-Net的亚马逊雨林金矿探区卫星图像分割
近年来,亚马逊雨林地区的金矿勘探活动不断增加。这种性质的探索对动物、植物和生活在这些地区的土著人民的生活有直接的影响。为了绘制和检测土地使用情况,除了使用卫星图像的其他活动外,还探索了机器学习和人工智能的几种方法,包括古典和现代。本文开发了一种利用U-Net在高分辨率卫星图像上分割金矿勘探区域的方法,估计最合适的损失、优化函数和任务的训练批大小。分割结果的准确率为91.29%,查全率为74.64%,f1得分为76.60%,准确率为98.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信