Improving Face Recognition for Mask Wearers Using Data Augmentation of Left–Right Image Flipping and Rotation

M. Hongo, T. Goto
{"title":"Improving Face Recognition for Mask Wearers Using Data Augmentation of Left–Right Image Flipping and Rotation","authors":"M. Hongo, T. Goto","doi":"10.1145/3506651.3506661","DOIUrl":null,"url":null,"abstract":"Wearing a mask hides half of a face, making it difficult to recognize using face recognition. This raises the problem of it being impossible to identify the whereabouts of a person because their face cannot be recognized. In this paper, we aim to improve the recognition rate by using a learning-based method combining an NVIDIA pre-trained model and face images with and without masks. Furthermore, we aim to improve the recognition rate by utilizing data augmentation to increase the number of training data. Experimental results show that the recognition rate of face images improved.","PeriodicalId":280080,"journal":{"name":"2021 4th International Conference on Digital Medicine and Image Processing","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Digital Medicine and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506651.3506661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wearing a mask hides half of a face, making it difficult to recognize using face recognition. This raises the problem of it being impossible to identify the whereabouts of a person because their face cannot be recognized. In this paper, we aim to improve the recognition rate by using a learning-based method combining an NVIDIA pre-trained model and face images with and without masks. Furthermore, we aim to improve the recognition rate by utilizing data augmentation to increase the number of training data. Experimental results show that the recognition rate of face images improved.
利用左右图像翻转和旋转的数据增强改进面具佩戴者的人脸识别
戴着面具遮住了半张脸,很难用人脸识别来识别。这就产生了一个问题,因为无法识别一个人的脸,所以无法确定他们的下落。在本文中,我们的目标是使用基于学习的方法结合NVIDIA预训练模型和带面具和不带面具的人脸图像来提高识别率。此外,我们的目标是通过数据增强来增加训练数据的数量来提高识别率。实验结果表明,该方法提高了人脸图像的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信