Embedded chipless RFID measurement methodology for microwave materials characterization

Katelyn R. Brinker, R. Zoughi
{"title":"Embedded chipless RFID measurement methodology for microwave materials characterization","authors":"Katelyn R. Brinker, R. Zoughi","doi":"10.1109/I2MTC.2018.8409670","DOIUrl":null,"url":null,"abstract":"The use of chipless RFID is rapidly growing with applications for both identification and sensing purposes. In existing chipless RFID technology for identification purposes, radar cross-section (RCS) vs. frequency information is often used to create a unique identification (binary) code of 1's and 0's. In contrast, for purposes such as environmental sensing (i.e., temperature, humidity, gas concentration, etc.), a shift in the RCS frequency response is then correlated to the sought-for information. In this paper the utility of embedding chipless RFID sensors in various dielectric materials is investigated, where changes in the material properties cause a shift in the RFID frequency response and the changes are translated to a change in its original binary code. To illustrate the efficacy of this unique technique for materials characterization, electromagnetic simulations and measurements were conducted, the result of which are presented in this paper.","PeriodicalId":393766,"journal":{"name":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2018.8409670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The use of chipless RFID is rapidly growing with applications for both identification and sensing purposes. In existing chipless RFID technology for identification purposes, radar cross-section (RCS) vs. frequency information is often used to create a unique identification (binary) code of 1's and 0's. In contrast, for purposes such as environmental sensing (i.e., temperature, humidity, gas concentration, etc.), a shift in the RCS frequency response is then correlated to the sought-for information. In this paper the utility of embedding chipless RFID sensors in various dielectric materials is investigated, where changes in the material properties cause a shift in the RFID frequency response and the changes are translated to a change in its original binary code. To illustrate the efficacy of this unique technique for materials characterization, electromagnetic simulations and measurements were conducted, the result of which are presented in this paper.
微波材料表征的嵌入式无芯片RFID测量方法
无芯片RFID的使用随着识别和传感目的的应用迅速增长。在现有的用于识别目的的无芯片RFID技术中,雷达横截面(RCS)与频率信息通常用于创建1和0的唯一识别(二进制)代码。相比之下,对于环境传感(即温度、湿度、气体浓度等)等目的,RCS频率响应的移位与所寻找的信息相关。本文研究了在各种介电材料中嵌入无芯片RFID传感器的效用,其中材料特性的变化会导致RFID频率响应的变化,并且这些变化被转化为其原始二进制代码的变化。为了说明这种独特的材料表征技术的有效性,进行了电磁模拟和测量,并在本文中给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信