Scalable Joins over Big Data Streams: Actual and Future Research Trends

A. Cuzzocrea
{"title":"Scalable Joins over Big Data Streams: Actual and Future Research Trends","authors":"A. Cuzzocrea","doi":"10.1109/ICDMW58026.2022.00132","DOIUrl":null,"url":null,"abstract":"Joins are at the basis of a plethora of big data analytics tools over massive big data streams. Developed in the context of static data sets, joins have emerged as of tremendous interest in the context of streaming data sets, due to their versatility in a wide range of applicative settings, ranging from environmental networks to logistics systems, from smart city applications to healthcare systems, from energy management systems to prognostic tools, and so forth. Joins over big data streams has traditionally attracted the attention of a growing part of the database and data mining community, then landing in the wider big data community. Following these considerations, this paper proposes a critical review of actual and future trends in the context of scalable joins over big data streams.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Joins are at the basis of a plethora of big data analytics tools over massive big data streams. Developed in the context of static data sets, joins have emerged as of tremendous interest in the context of streaming data sets, due to their versatility in a wide range of applicative settings, ranging from environmental networks to logistics systems, from smart city applications to healthcare systems, from energy management systems to prognostic tools, and so forth. Joins over big data streams has traditionally attracted the attention of a growing part of the database and data mining community, then landing in the wider big data community. Following these considerations, this paper proposes a critical review of actual and future trends in the context of scalable joins over big data streams.
大数据流上的可扩展连接:实际和未来的研究趋势
连接是海量大数据流上大量大数据分析工具的基础。连接是在静态数据集的背景下发展起来的,由于其在广泛的应用环境中的多功能性,从环境网络到物流系统,从智慧城市应用到医疗保健系统,从能源管理系统到预测工具等,因此在流数据集的背景下引起了极大的兴趣。传统上,大数据流上的join吸引了越来越多的数据库和数据挖掘社区的关注,然后在更广泛的大数据社区落地。根据这些考虑,本文对大数据流上可扩展连接的实际和未来趋势进行了批判性的回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信