CSDM: Fusion of orthographic contour signature and distribution matrix for 3D object global representation and object recognition

Mingliang Fu, Haitao Luo, Weijia Zhou
{"title":"CSDM: Fusion of orthographic contour signature and distribution matrix for 3D object global representation and object recognition","authors":"Mingliang Fu, Haitao Luo, Weijia Zhou","doi":"10.1109/ROBIO.2017.8324778","DOIUrl":null,"url":null,"abstract":"This paper presents a novel global object descriptor, achieving a balance of descriptiveness, robustness and efficiency. The proposed descriptor forms a comprehensive description of an object instance by encoding projection statistics in terms of contour signature and distribution matrix (CSDM). To generate a CSDM descriptor, a local reference frame is defined to align the object's point cloud with the canonical coordinate system. After that, the sub-histogram of contour signature and distribution matrix can be determined from orthographic 2D projected patterns. Finally, a CSDM descriptor is generated with a concatenation of sub-histogram. In recognition stage, a two-stage comparison metric is designed to eliminate information redundancy. A comprehensive performance evaluation in terms of scalability, descriptiveness, robustness and efficiency is performed on the publicly available dataset. Experimental results show that the performance of CSDM descriptor is comparable with the other two state-of-the-art descriptors.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel global object descriptor, achieving a balance of descriptiveness, robustness and efficiency. The proposed descriptor forms a comprehensive description of an object instance by encoding projection statistics in terms of contour signature and distribution matrix (CSDM). To generate a CSDM descriptor, a local reference frame is defined to align the object's point cloud with the canonical coordinate system. After that, the sub-histogram of contour signature and distribution matrix can be determined from orthographic 2D projected patterns. Finally, a CSDM descriptor is generated with a concatenation of sub-histogram. In recognition stage, a two-stage comparison metric is designed to eliminate information redundancy. A comprehensive performance evaluation in terms of scalability, descriptiveness, robustness and efficiency is performed on the publicly available dataset. Experimental results show that the performance of CSDM descriptor is comparable with the other two state-of-the-art descriptors.
面向三维目标全局表示和目标识别的正射影轮廓特征与分布矩阵融合
本文提出了一种新的全局对象描述符,实现了描述性、鲁棒性和效率的平衡。该描述符通过轮廓特征和分布矩阵(CSDM)对投影统计量进行编码,形成对对象实例的全面描述。为了生成CSDM描述符,定义了一个局部参考框架来将对象的点云与规范坐标系对齐。然后,从正射二维投影模式中确定轮廓特征的子直方图和分布矩阵。最后,使用子直方图的串联生成CSDM描述符。在识别阶段,设计了两阶段比较度量来消除信息冗余。在可扩展性、描述性、鲁棒性和效率方面对公开可用的数据集进行了全面的性能评估。实验结果表明,CSDM描述符的性能与其他两种最先进的描述符相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信