New uninorm-based neuron model and fuzzy neural networks

A. Lemos, W. Caminhas, F. Gomide
{"title":"New uninorm-based neuron model and fuzzy neural networks","authors":"A. Lemos, W. Caminhas, F. Gomide","doi":"10.1109/NAFIPS.2010.5548195","DOIUrl":null,"url":null,"abstract":"This paper suggests a uninorm-based neuron model and a neural network architecture using unineurons. The unineuron generalizes logical and/or neurons using weighted uninorms. Previous works have addressed fuzzy neurons within the framework of uninorms. This paper introduces a new unineuron model that uses weighted aggregation of the inputs, and computes its output using a conventional neuron. A feedforward fuzzy neural architecture is developed and used to model nonlinear dynamic systems. The resulting fuzzy neural network easily allows fuzzy rule insertion and/or extraction from its topology, process information following a fuzzy inference mechanism, and is an universal function approximator. Experimental results show that the uninorm-based network provides accurate results and performs better than several similar neural and alternative fuzzy function approximators.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

This paper suggests a uninorm-based neuron model and a neural network architecture using unineurons. The unineuron generalizes logical and/or neurons using weighted uninorms. Previous works have addressed fuzzy neurons within the framework of uninorms. This paper introduces a new unineuron model that uses weighted aggregation of the inputs, and computes its output using a conventional neuron. A feedforward fuzzy neural architecture is developed and used to model nonlinear dynamic systems. The resulting fuzzy neural network easily allows fuzzy rule insertion and/or extraction from its topology, process information following a fuzzy inference mechanism, and is an universal function approximator. Experimental results show that the uninorm-based network provides accurate results and performs better than several similar neural and alternative fuzzy function approximators.
新的基于统一信息的神经元模型和模糊神经网络
本文提出了一种基于统一信息的神经元模型和使用统一神经元的神经网络结构。unineuron使用加权一致信息概括逻辑和/或神经元。以前的工作已经在统一信息的框架内解决了模糊神经元。本文介绍了一种新的非神经元模型,该模型使用输入的加权聚合,并使用常规神经元计算其输出。提出了一种前馈模糊神经网络结构,并将其用于非线性动态系统的建模。由此产生的模糊神经网络可以很容易地从其拓扑结构中插入和/或提取模糊规则,按照模糊推理机制处理信息,并且是一个通用的函数逼近器。实验结果表明,基于统一信息的网络提供了准确的结果,并且优于几种相似的神经网络和替代模糊函数逼近器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信