Nonstationary parametric system identification using higher-order statistics

Donghae Kim, P. White
{"title":"Nonstationary parametric system identification using higher-order statistics","authors":"Donghae Kim, P. White","doi":"10.1109/TFSA.1998.721460","DOIUrl":null,"url":null,"abstract":"In this paper, consideration is given to the estimation of the parameters of a time-varying linear model. It is shown that the time-varying ARMA model of single-input single-output (SISO) system is equivalent to the time-invariant ARMA model of multi-input multi-output (MIMO) system. Novel methods for the parameter estimation task are developed based on the concepts of higher order statistics (HOS). The proposed algorithms are compared with a range of existing (second order) algorithms via simulation studies which cover several systems at various signal to noise ratios (SNRs). Through these studies, the robustness of the HOS based algorithms to additive Gaussian noise is demonstrated.","PeriodicalId":395542,"journal":{"name":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1998.721460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, consideration is given to the estimation of the parameters of a time-varying linear model. It is shown that the time-varying ARMA model of single-input single-output (SISO) system is equivalent to the time-invariant ARMA model of multi-input multi-output (MIMO) system. Novel methods for the parameter estimation task are developed based on the concepts of higher order statistics (HOS). The proposed algorithms are compared with a range of existing (second order) algorithms via simulation studies which cover several systems at various signal to noise ratios (SNRs). Through these studies, the robustness of the HOS based algorithms to additive Gaussian noise is demonstrated.
非平稳参数系统的高阶统计辨识
本文考虑了时变线性模型参数的估计问题。结果表明,单输入单输出(SISO)系统的时变ARMA模型等价于多输入多输出(MIMO)系统的时不变ARMA模型。基于高阶统计量(HOS)的概念,提出了一种新的参数估计方法。通过仿真研究,将所提出的算法与现有的一系列(二阶)算法进行了比较,这些算法涵盖了不同信噪比(SNRs)的几个系统。通过这些研究,证明了基于HOS算法对加性高斯噪声的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信