Application of Interactive Computer-Assisted Argument Extraction to Opinionated Social Media Texts

K. Kucher, Maria Skeppstedt, A. Kerren
{"title":"Application of Interactive Computer-Assisted Argument Extraction to Opinionated Social Media Texts","authors":"K. Kucher, Maria Skeppstedt, A. Kerren","doi":"10.1145/3231622.3232505","DOIUrl":null,"url":null,"abstract":"The analysis of various opinions and arguments in textual data can be facilitated by automatic topic modeling methods; however, the exploration and interpretation of the resulting topics and terms may prove to be difficult to the analysts. Opinions, stances, arguments, topics, terms, and text documents are usually connected with many-to-many relationships for such tasks. Exploratory visual analysis with interactive tools can help the analysts to get an overview of the topics and opinions, identify particularly interesting documents, and describe main themes of various arguments. In our previous work, we introduced an interactive tool called Topics2Themes that was used for topic and theme analysis of vaccination-related discussion texts with a limited set of stance categories. In this poster paper, we describe an application of Topics2Themes to a different genre of data, namely, political comments from Reddit, and multiple sentiment and stance categories detected with automatic classifiers.","PeriodicalId":272967,"journal":{"name":"Proceedings of the 11th International Symposium on Visual Information Communication and Interaction","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Symposium on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3231622.3232505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The analysis of various opinions and arguments in textual data can be facilitated by automatic topic modeling methods; however, the exploration and interpretation of the resulting topics and terms may prove to be difficult to the analysts. Opinions, stances, arguments, topics, terms, and text documents are usually connected with many-to-many relationships for such tasks. Exploratory visual analysis with interactive tools can help the analysts to get an overview of the topics and opinions, identify particularly interesting documents, and describe main themes of various arguments. In our previous work, we introduced an interactive tool called Topics2Themes that was used for topic and theme analysis of vaccination-related discussion texts with a limited set of stance categories. In this poster paper, we describe an application of Topics2Themes to a different genre of data, namely, political comments from Reddit, and multiple sentiment and stance categories detected with automatic classifiers.
交互式计算机辅助论据提取在固执己见的社交媒体文本中的应用
自动主题建模方法可以方便地分析文本数据中的各种观点和论点;然而,对由此产生的主题和术语的探索和解释可能对分析人员来说是困难的。对于这类任务,意见、立场、论证、主题、术语和文本文档通常与多对多关系联系在一起。使用交互式工具的探索性可视化分析可以帮助分析人员获得主题和观点的概述,识别特别有趣的文档,并描述各种论点的主题。在我们之前的工作中,我们介绍了一个名为Topics2Themes的交互式工具,该工具用于对具有有限立场类别的疫苗相关讨论文本进行主题和主题分析。在这篇海报论文中,我们描述了Topics2Themes对不同类型数据的应用,即来自Reddit的政治评论,以及自动分类器检测到的多个情绪和立场类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信