{"title":"HiPR: High-level Partial Reconfiguration for Fast Incremental FPGA Compilation","authors":"Yuanlong Xiao, A. Hota, Dongjoon Park, A. DeHon","doi":"10.1109/FPL57034.2022.00022","DOIUrl":null,"url":null,"abstract":"Partial Reconfiguration (PR) is a key technique in the design of modern FPGAs. However, current PR tools heavily rely on the developers to manually conduct PR module definition, floorplanning, and flow control at a low level. The existing PR tools do not consider High-Level-Synthesis languages either, which is of great interest to software developers. We propose HiPR, an open-source framework, to bridge the gap between HLS and PR. HiPR allows the developer to define partially reconfigurable C/C++ functions instead of Verilog modules, which benefits the FPGA incremental compilation and automates the flow from C/C++ to bitstreams. By mapping Rosetta HLS benchmarks, the incremental compilation can be accelerated by 3–10× compared with Xilinx Vitis normal flow without performance loss.","PeriodicalId":380116,"journal":{"name":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL57034.2022.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Partial Reconfiguration (PR) is a key technique in the design of modern FPGAs. However, current PR tools heavily rely on the developers to manually conduct PR module definition, floorplanning, and flow control at a low level. The existing PR tools do not consider High-Level-Synthesis languages either, which is of great interest to software developers. We propose HiPR, an open-source framework, to bridge the gap between HLS and PR. HiPR allows the developer to define partially reconfigurable C/C++ functions instead of Verilog modules, which benefits the FPGA incremental compilation and automates the flow from C/C++ to bitstreams. By mapping Rosetta HLS benchmarks, the incremental compilation can be accelerated by 3–10× compared with Xilinx Vitis normal flow without performance loss.