Monitoring of Varroa Infestation Rate in Beehives: A Simple AI Approach

Lukáš Picek, Adam Novozámský, R. Frydrychová, B. Zitová, Pavel Mach
{"title":"Monitoring of Varroa Infestation Rate in Beehives: A Simple AI Approach","authors":"Lukáš Picek, Adam Novozámský, R. Frydrychová, B. Zitová, Pavel Mach","doi":"10.1109/ICIP46576.2022.9897809","DOIUrl":null,"url":null,"abstract":"This paper addresses the monitoring of Varroa destructor infestation in Western honey bee colonies. We propose a simple approach using automatic image-based analysis of the fallout on beehive bottom boards. In contrast to the existing high-tech methods, our solution does not require extensive and expensive hardware components, just a standard smart-phone. The described method has the potential to replace the time-consuming, inaccurate, and most common practice where the infestation level is evaluated manually. The underlining machine learning method combines a thresholding algorithm with a shallow CNN—VarroaNet. It provides a reliable estimate of the infestation level with a mean infestation level accuracy of 96.0% and 93.8% in the autumn and winter, respectively. Furthermore, we introduce the developed end-to-end system and its deployment into the online beekeeper’s diary—ProBee—that allows users to identify and track infestation levels on bee colonies.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses the monitoring of Varroa destructor infestation in Western honey bee colonies. We propose a simple approach using automatic image-based analysis of the fallout on beehive bottom boards. In contrast to the existing high-tech methods, our solution does not require extensive and expensive hardware components, just a standard smart-phone. The described method has the potential to replace the time-consuming, inaccurate, and most common practice where the infestation level is evaluated manually. The underlining machine learning method combines a thresholding algorithm with a shallow CNN—VarroaNet. It provides a reliable estimate of the infestation level with a mean infestation level accuracy of 96.0% and 93.8% in the autumn and winter, respectively. Furthermore, we introduce the developed end-to-end system and its deployment into the online beekeeper’s diary—ProBee—that allows users to identify and track infestation levels on bee colonies.
蜂箱中Varroa侵害率的监测:一种简单的AI方法
本文对西部蜂群中灭螨的侵害进行了监测。我们提出了一种简单的方法,使用基于图像的自动分析蜂窝底板上的沉降物。与现有的高科技方法相比,我们的解决方案不需要大量昂贵的硬件组件,只需要一个标准的智能手机。所描述的方法有可能取代人工评估侵扰程度的耗时、不准确和最常见的做法。下划线机器学习方法将阈值算法与浅层CNN-VarroaNet相结合。秋季和冬季的平均侵染水平精度分别为96.0%和93.8%,提供了可靠的侵染水平估计。此外,我们将开发的端到端系统及其部署到在线养蜂人日记- probee中,允许用户识别和跟踪蜂群的侵扰程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信