Leading Order Triple Collinear Splitting Functions Revisited

Oscar Braun-White
{"title":"Leading Order Triple Collinear Splitting Functions Revisited","authors":"Oscar Braun-White","doi":"10.22323/1.416.0028","DOIUrl":null,"url":null,"abstract":"I review the factorisation properties of tree level amplitudes when three particles $i$, $j$, $k$ are collinear. The triple collinear splitting functions contain both iterated single unresolved contributions, and genuine double unresolved contributions. I make this explicit by rewriting the known triple collinear splitting functions for a quark and two gluons in terms of products of two-particle splitting functions, and a remainder that is explicitly finite when any two of $\\{i,j,k\\}$ are collinear.","PeriodicalId":151433,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.416.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

I review the factorisation properties of tree level amplitudes when three particles $i$, $j$, $k$ are collinear. The triple collinear splitting functions contain both iterated single unresolved contributions, and genuine double unresolved contributions. I make this explicit by rewriting the known triple collinear splitting functions for a quark and two gluons in terms of products of two-particle splitting functions, and a remainder that is explicitly finite when any two of $\{i,j,k\}$ are collinear.
前阶三重共线分裂函数
本文回顾了三个粒子$ I $, $j$, $k$共线时树级振幅的分解性质。三重共线分裂函数既包含迭代的单未解析贡献,也包含真正的双未解析贡献。我通过将已知的夸克和两个胶子的三重共线分裂函数重写为两粒子分裂函数的乘积来明确这一点,并且当$\{I,j,k\}$中的任意两个共线时,余数是显式有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信