Deep Learning Approach for Detection of Atrial Fibrillation and Atrial Flutter Based on ECG Images

Estela Ribeiro, F. M. Dias, Q. B. Soares, José E. Krieger, M. A. Gutierrez
{"title":"Deep Learning Approach for Detection of Atrial Fibrillation and Atrial Flutter Based on ECG Images","authors":"Estela Ribeiro, F. M. Dias, Q. B. Soares, José E. Krieger, M. A. Gutierrez","doi":"10.5753/sbcas.2023.229744","DOIUrl":null,"url":null,"abstract":"This study explores the application of image-based deep learning techniques to distinguish between Atrial Fibrillation (AFib) and Atrial Flutter (AFlut) using images of standard 12-lead ECG exams from a private database. By implementing a MobileNet Convolutional Neural Network architecture, we achieve a high classification performance, with an accuracy of 95.6%, AUROC of 97.6%, F1-score of 83.2%, specificity of 99.6%, and sensitivity of 72.7%. We also applied explainable methods, such as Grad-CAM and LIME, to try to interpret the model’s decision-making process and identify significant regions within the ECG images that contribute to the classification. Our results demonstrate the potential of image-based deep learning approaches for accurate and reliable discrimination between AFib and AFlut, paving the way for enhanced diagnostic capabilities in clinical settings.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the application of image-based deep learning techniques to distinguish between Atrial Fibrillation (AFib) and Atrial Flutter (AFlut) using images of standard 12-lead ECG exams from a private database. By implementing a MobileNet Convolutional Neural Network architecture, we achieve a high classification performance, with an accuracy of 95.6%, AUROC of 97.6%, F1-score of 83.2%, specificity of 99.6%, and sensitivity of 72.7%. We also applied explainable methods, such as Grad-CAM and LIME, to try to interpret the model’s decision-making process and identify significant regions within the ECG images that contribute to the classification. Our results demonstrate the potential of image-based deep learning approaches for accurate and reliable discrimination between AFib and AFlut, paving the way for enhanced diagnostic capabilities in clinical settings.
基于心电图像的房颤和心房扑动检测的深度学习方法
本研究探索了基于图像的深度学习技术的应用,使用来自私人数据库的标准12导联心电图检查图像来区分心房颤动(AFib)和心房扑动(AFlut)。通过实现MobileNet卷积神经网络架构,我们获得了很高的分类性能,准确率为95.6%,AUROC为97.6%,f1评分为83.2%,特异性为99.6%,灵敏度为72.7%。我们还应用了可解释的方法,如Grad-CAM和LIME,试图解释模型的决策过程,并识别心电图图像中有助于分类的重要区域。我们的研究结果证明了基于图像的深度学习方法在AFib和AFlut之间准确可靠区分的潜力,为增强临床环境中的诊断能力铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信