Kalman-filter algorithm and PMUs for state estimation of distribution networks

F. Shabaninia, M. Vaziri, M. Amini, M. Zarghami, S. Vadhava
{"title":"Kalman-filter algorithm and PMUs for state estimation of distribution networks","authors":"F. Shabaninia, M. Vaziri, M. Amini, M. Zarghami, S. Vadhava","doi":"10.1109/IRI.2014.7051983","DOIUrl":null,"url":null,"abstract":"Availability of data from Phasor Measurement Units (PMUs), characterized by their high accuracy to measure node voltage phasors, allows a simplification of the State Estimation (SE) problems. In this paper Iterated Kaiman Filter (IKF) algorithm, as a new method, has been used for SE of a test Active Distributed Network (ADN) integrating PMU measurements. In order to validate the results, Weighted Least Squares (WLS) method, as a common way for SE problems, is simulated. In this case study, IEEE 13-bus test system is used with considering one Distributed Generation (DG). Simulation results show the proper performance of the IKF method.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Availability of data from Phasor Measurement Units (PMUs), characterized by their high accuracy to measure node voltage phasors, allows a simplification of the State Estimation (SE) problems. In this paper Iterated Kaiman Filter (IKF) algorithm, as a new method, has been used for SE of a test Active Distributed Network (ADN) integrating PMU measurements. In order to validate the results, Weighted Least Squares (WLS) method, as a common way for SE problems, is simulated. In this case study, IEEE 13-bus test system is used with considering one Distributed Generation (DG). Simulation results show the proper performance of the IKF method.
配电网状态估计的卡尔曼滤波算法与pmu
相量测量单元(pmu)的数据可用性以其测量节点电压相量的高精度为特征,可以简化状态估计(SE)问题。本文将迭代开曼滤波(IKF)算法作为一种新方法,应用于集成PMU测量的试验性有源分布式网络(ADN)的SE处理。为了验证结果,对SE问题常用的加权最小二乘方法进行了仿真。在本案例中,采用IEEE 13总线测试系统,并考虑一个分布式电源(DG)。仿真结果表明了IKF方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信