The Influence of Flexible Strip Height on Convective Heat Transfer Enhancement

Yang Yang, D. Ting, S. Ray
{"title":"The Influence of Flexible Strip Height on Convective Heat Transfer Enhancement","authors":"Yang Yang, D. Ting, S. Ray","doi":"10.1115/ajkfluids2019-5229","DOIUrl":null,"url":null,"abstract":"\n A 12.7 mm wide flexible rectangular strip, made from 0.1 mm-thick aluminum sheet, is experimentally explored as a vortical flow generator for promoting heat convection from a flat plate in a wind tunnel. The strip is positioned normal to the freestream with an incoming velocity of 10 m/s, resulting in a Reynolds number, based on the strip width, of 8,500. The influence of the height of the flexible strip on the convective heat transfer enhancement is of interest. Three strip heights, 25.4 mm, 38.1 mm and 50.8 mm, were investigated. The heat transfer results are expressed in terms of Nusselt number, Nu, normalized by the unperturbed reference Nu0. The shortest, 25.4 mm high flexible strip resulted in the highest peak and overall heat transfer enhancement. The distribution of the local heat transfer enhancement is found to correlate well with the turbulent flow motion detailed using a triple-sensor hot-wire anemometer. Pointedly, the heat transfer rate is most elevated when the local flow is moving toward the hot plate, sweeping across a stretch of the surface before moving away from it. These effective convective motions are most effectively generated by the vortices produced by the shortest strip.","PeriodicalId":314304,"journal":{"name":"Volume 1: Fluid Mechanics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A 12.7 mm wide flexible rectangular strip, made from 0.1 mm-thick aluminum sheet, is experimentally explored as a vortical flow generator for promoting heat convection from a flat plate in a wind tunnel. The strip is positioned normal to the freestream with an incoming velocity of 10 m/s, resulting in a Reynolds number, based on the strip width, of 8,500. The influence of the height of the flexible strip on the convective heat transfer enhancement is of interest. Three strip heights, 25.4 mm, 38.1 mm and 50.8 mm, were investigated. The heat transfer results are expressed in terms of Nusselt number, Nu, normalized by the unperturbed reference Nu0. The shortest, 25.4 mm high flexible strip resulted in the highest peak and overall heat transfer enhancement. The distribution of the local heat transfer enhancement is found to correlate well with the turbulent flow motion detailed using a triple-sensor hot-wire anemometer. Pointedly, the heat transfer rate is most elevated when the local flow is moving toward the hot plate, sweeping across a stretch of the surface before moving away from it. These effective convective motions are most effectively generated by the vortices produced by the shortest strip.
柔性带钢高度对强化对流换热的影响
利用0.1 mm厚铝板制成12.7 mm宽的柔性矩形条,在风洞中作为促进平板热对流的涡流发生器进行了实验研究。带钢垂直于自由流,入射速度为10m /s,基于带钢宽度的雷诺数为8500。挠性带的高度对对流换热增强的影响是值得关注的。条带高度分别为25.4 mm、38.1 mm和50.8 mm。传热结果用努塞尔数Nu表示,用无扰动参考值Nu0归一化。最短的25.4 mm高的柔性带材产生了最高的峰值和整体传热增强。局部传热增强的分布与用三传感器热线风速计详细描述的湍流运动有很好的相关性。值得注意的是,当局部气流向热板移动,在离开热板之前扫过一段表面时,传热率最高。这些有效的对流运动是由最短的条带产生的涡最有效地产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信