Towards Accurate Predictions of Customer Purchasing Patterns

Rafael Valero-Fernandez, David J. Collins, Colin Rigby, James Bailey
{"title":"Towards Accurate Predictions of Customer Purchasing Patterns","authors":"Rafael Valero-Fernandez, David J. Collins, Colin Rigby, James Bailey","doi":"10.1109/CIT.2017.58","DOIUrl":null,"url":null,"abstract":"A range of algorithms was used to classify online retail customers of a UK company using historical transaction data. The predictive capabilities of the classifiers were assessed using linear regression, Lasso and regression trees. Unlike most related studies, classifications were based upon specific and marketing focused customer behaviours. Prediction accuracy on untrained customers was generally better than 80%. The models implemented (and compared) for classification were: Logistic Regression, Quadratic Discriminant Analysis, Linear SVM, RBF SVM, Gaussian Process, Decision Tree, Random Forest and Multi-layer Perceptron (Neural Network). Postcode data was then used to classify solely on demographics derived from the UK Land Registry and similar public data sources. Prediction accuracy remained better than 60%.","PeriodicalId":378423,"journal":{"name":"2017 IEEE International Conference on Computer and Information Technology (CIT)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer and Information Technology (CIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIT.2017.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A range of algorithms was used to classify online retail customers of a UK company using historical transaction data. The predictive capabilities of the classifiers were assessed using linear regression, Lasso and regression trees. Unlike most related studies, classifications were based upon specific and marketing focused customer behaviours. Prediction accuracy on untrained customers was generally better than 80%. The models implemented (and compared) for classification were: Logistic Regression, Quadratic Discriminant Analysis, Linear SVM, RBF SVM, Gaussian Process, Decision Tree, Random Forest and Multi-layer Perceptron (Neural Network). Postcode data was then used to classify solely on demographics derived from the UK Land Registry and similar public data sources. Prediction accuracy remained better than 60%.
顾客购买模式的准确预测
利用历史交易数据,使用一系列算法对一家英国公司的在线零售客户进行分类。使用线性回归、Lasso和回归树评估分类器的预测能力。与大多数相关研究不同,分类是基于特定的和以营销为重点的客户行为。对未经培训的客户的预测准确率一般优于80%。实现(和比较)的分类模型有:逻辑回归、二次判别分析、线性支持向量机、RBF支持向量机、高斯过程、决策树、随机森林和多层感知器(神经网络)。然后,邮政编码数据被用于仅根据来自英国土地注册处和类似公共数据源的人口统计数据进行分类。预测准确率保持在60%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信