An overview of recent window based feature extraction algorithms for speaker recognition

Genevieve M. Sapijaszko, W. Mikhael
{"title":"An overview of recent window based feature extraction algorithms for speaker recognition","authors":"Genevieve M. Sapijaszko, W. Mikhael","doi":"10.1109/MWSCAS.2012.6292161","DOIUrl":null,"url":null,"abstract":"An important first step in speaker recognition is the extraction of unique and reliable features that can identify speakers from speech signals. Feature extraction methods have evolved in the last 20 years, with window frame algorithms in particular showing promise. This paper compares and contrasts recent window frames algorithms using the Center for Spoken Language Understanding (CLSU) database through experiments. The different coefficients used and compared are: Real Cepstral Coefficients (RCC), Mel Cepstral Coefficients (MFCC), Linear Predictive Cepstral Coefficients (LPCC), and Perceptual Linear Predictive Cepstral Coefficients (PLPCC). The feature extraction methods will be used in conjunction with a Vector Quantization (VQ) method and a Euclidean distance classifier to find the best recognition rate among the feature extraction features. A survey of published state-of-the-art, window-based, feature extraction methods are evaluated against published results.","PeriodicalId":324891,"journal":{"name":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2012.6292161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

An important first step in speaker recognition is the extraction of unique and reliable features that can identify speakers from speech signals. Feature extraction methods have evolved in the last 20 years, with window frame algorithms in particular showing promise. This paper compares and contrasts recent window frames algorithms using the Center for Spoken Language Understanding (CLSU) database through experiments. The different coefficients used and compared are: Real Cepstral Coefficients (RCC), Mel Cepstral Coefficients (MFCC), Linear Predictive Cepstral Coefficients (LPCC), and Perceptual Linear Predictive Cepstral Coefficients (PLPCC). The feature extraction methods will be used in conjunction with a Vector Quantization (VQ) method and a Euclidean distance classifier to find the best recognition rate among the feature extraction features. A survey of published state-of-the-art, window-based, feature extraction methods are evaluated against published results.
基于窗口的说话人识别特征提取算法综述
说话人识别的重要第一步是从语音信号中提取出独特可靠的特征来识别说话人。在过去的20年里,特征提取方法得到了发展,特别是窗框算法显示出了希望。本文利用美国口语理解中心(CLSU)数据库,通过实验对最近几种窗框算法进行了比较和对比。使用和比较的不同系数是:真实倒谱系数(RCC), Mel倒谱系数(MFCC),线性预测倒谱系数(LPCC)和感知线性预测倒谱系数(PLPCC)。特征提取方法将与矢量量化(VQ)方法和欧几里得距离分类器结合使用,以在特征提取的特征中找到最佳识别率。对已发表的最先进的、基于窗口的特征提取方法进行了调查,并对已发表的结果进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信