Domain adaption based on lda and word embedding in SMT

Shaolin Zhu, Yating Yang, Xiao Li, Tonghai Jiang, Lei Wang, Xi Zhou, Chenggang Mi
{"title":"Domain adaption based on lda and word embedding in SMT","authors":"Shaolin Zhu, Yating Yang, Xiao Li, Tonghai Jiang, Lei Wang, Xi Zhou, Chenggang Mi","doi":"10.1109/IALP.2017.8300561","DOIUrl":null,"url":null,"abstract":"Current methods about domain adaption in SMT mostly assume that a small in-domain sample is need at training time. However, the fact target domain may not be known at training time so that it may not satisfy the fact translation or is far away from user needs. We instead propose a more suitable method to avoid this situation. Our methods mainly contain two sections (1) Firstly, we use word embedding and LDA model to divide the training corpus into some similar semantic subdomains. (2) Secondly, for an actual source sentences we can select a more suitable translation system by semantic clues. We implement experiments on two language pairs. We can observe consistent improvements over three baselines.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current methods about domain adaption in SMT mostly assume that a small in-domain sample is need at training time. However, the fact target domain may not be known at training time so that it may not satisfy the fact translation or is far away from user needs. We instead propose a more suitable method to avoid this situation. Our methods mainly contain two sections (1) Firstly, we use word embedding and LDA model to divide the training corpus into some similar semantic subdomains. (2) Secondly, for an actual source sentences we can select a more suitable translation system by semantic clues. We implement experiments on two language pairs. We can observe consistent improvements over three baselines.
基于lda和词嵌入的SMT领域自适应
目前SMT的域自适应方法大多假设在训练时需要一个小的域内样本。然而,在训练时可能不知道事实目标域,因此它可能不满足事实翻译或远离用户需求。相反,我们提出了一种更合适的方法来避免这种情况。我们的方法主要包括两个部分:(1)首先,我们使用词嵌入和LDA模型将训练语料库划分为一些相似的语义子域;(2)其次,对于一个实际的源句子,我们可以根据语义线索选择更合适的翻译系统。我们在两个语言对上进行实验。我们可以在三个基线上观察到一致的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信