Using Ensembles of Neural Networks to Improve Automatic Relevance Determination

Yu Fu, A. Browne
{"title":"Using Ensembles of Neural Networks to Improve Automatic Relevance Determination","authors":"Yu Fu, A. Browne","doi":"10.1109/IJCNN.2007.4371195","DOIUrl":null,"url":null,"abstract":"Automatic relevance determination (ARD) is an efficient technique to infer the relevance of input features with respect to their ability to predict the target output for a task. ARD optimizes the hyperparameters to maximize the evidence. This optimization can cause some hyperparameters of relevant features tends towards infinity and therefore these features are inferred as irrelevant by an ARD model. The overfitting of relevance parameters cause feature relevance determinations to be not stable and reliable. Neural network ensemble methods can utilize the diversity between ensemble members to reduce the uncertainty in order to generate a more reliable determination of input feature relevancies. Input features were properly grouped based on their relevance level by ensemble relevance prediction.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Automatic relevance determination (ARD) is an efficient technique to infer the relevance of input features with respect to their ability to predict the target output for a task. ARD optimizes the hyperparameters to maximize the evidence. This optimization can cause some hyperparameters of relevant features tends towards infinity and therefore these features are inferred as irrelevant by an ARD model. The overfitting of relevance parameters cause feature relevance determinations to be not stable and reliable. Neural network ensemble methods can utilize the diversity between ensemble members to reduce the uncertainty in order to generate a more reliable determination of input feature relevancies. Input features were properly grouped based on their relevance level by ensemble relevance prediction.
利用神经网络集成改进自动关联确定
自动相关性确定(ARD)是一种有效的技术,可以根据输入特征预测任务目标输出的能力来推断输入特征的相关性。ARD优化超参数以最大化证据。这种优化可能导致一些相关特征的超参数趋于无穷大,因此这些特征被ARD模型推断为不相关。相关性参数的过拟合导致特征相关性的确定不稳定、不可靠。神经网络集成方法可以利用集成成员之间的多样性来减少不确定性,从而产生更可靠的输入特征相关性确定。通过集成相关性预测,对输入特征进行相关度分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信