{"title":"Efficient Support of Location Transparency in Concurrent Object-Oriented Programming Languages","authors":"Wooyoung Kim, G. Agha","doi":"10.1145/224170.224297","DOIUrl":null,"url":null,"abstract":"We describe the design of a runtime system for a fine-grained concurrent object-oriented (actor) language and its performance. The runtime system provides considerable flexibility to users; specifically, it supports location transparency, actor creation and dynamic placement, and migration. The runtime system includes an efficient distributed name server, a latency hiding scheme for remote actor creation, and a compiler-controlled intra-node scheduling mechanism for local messages and dynamic load balancing. Our preliminary evaluation results suggest that the efficiency that is lost by the greater flexibility of actors can be restored by an efficient runtime system which provides an open interface that can be used by a compiler to allow optimizations. On several standard algorithms, the performance results for our system are comparable to efficient C implementations.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
We describe the design of a runtime system for a fine-grained concurrent object-oriented (actor) language and its performance. The runtime system provides considerable flexibility to users; specifically, it supports location transparency, actor creation and dynamic placement, and migration. The runtime system includes an efficient distributed name server, a latency hiding scheme for remote actor creation, and a compiler-controlled intra-node scheduling mechanism for local messages and dynamic load balancing. Our preliminary evaluation results suggest that the efficiency that is lost by the greater flexibility of actors can be restored by an efficient runtime system which provides an open interface that can be used by a compiler to allow optimizations. On several standard algorithms, the performance results for our system are comparable to efficient C implementations.