Cross Border Data Flow Governance in Storage Cloud Leveraging Deep Learning Techniques

Briti Gangopadhyay, Vishal Jetla, Sandeep R. Patil, H. Pancha, K. Gildea, Carl Zetie
{"title":"Cross Border Data Flow Governance in Storage Cloud Leveraging Deep Learning Techniques","authors":"Briti Gangopadhyay, Vishal Jetla, Sandeep R. Patil, H. Pancha, K. Gildea, Carl Zetie","doi":"10.1109/CCEM.2018.00012","DOIUrl":null,"url":null,"abstract":"Various federal laws (varying from country to country) govern geographically where a given category of data should reside, from where it should be accessible and where it should be restricted. Most of the data falling under the laws and regulation based on cross border data flow are unstructured data residing on file and object storage. Hence, it is vital for any unstructured data cloud storage system to cater to the requirements of cross border data flow compliance. The contribution of this paper is twofold which involves using deep learning models to categorize data residing on unified file and object storage as Personal Information and implementation of Geo-Fencing feature at the clustered file system level which helps regulate cross border data flow of the categorized Personal Information.","PeriodicalId":156315,"journal":{"name":"2018 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCEM.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various federal laws (varying from country to country) govern geographically where a given category of data should reside, from where it should be accessible and where it should be restricted. Most of the data falling under the laws and regulation based on cross border data flow are unstructured data residing on file and object storage. Hence, it is vital for any unstructured data cloud storage system to cater to the requirements of cross border data flow compliance. The contribution of this paper is twofold which involves using deep learning models to categorize data residing on unified file and object storage as Personal Information and implementation of Geo-Fencing feature at the clustered file system level which helps regulate cross border data flow of the categorized Personal Information.
利用深度学习技术的存储云跨境数据流治理
不同的联邦法律(因国家而异)规定了给定数据类别在地理上应该驻留的位置、应该从哪里访问以及应该限制在哪里。基于跨境数据流的法律法规管辖下的数据大多是驻留在文件和对象存储中的非结构化数据。因此,任何非结构化数据云存储系统都必须满足跨境数据流合规性的要求。本文的贡献是双重的,包括使用深度学习模型将驻留在统一文件和对象存储上的数据分类为个人信息,以及在集群文件系统级别实现地理围栏功能,有助于规范分类后的个人信息的跨境数据流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信