Overcomplete image representations and locally best model selection

Y. Wan, R. Nowak
{"title":"Overcomplete image representations and locally best model selection","authors":"Y. Wan, R. Nowak","doi":"10.1109/IAI.2000.839573","DOIUrl":null,"url":null,"abstract":"In this paper we formulate a general modeling framework that unifies and extends several state-of-the-art statistical image processing methodologies, including translation-invariant wavelet methods, overcomplete image representations, and best basis selection. At the heart of this framework is a novel hierarchical image model that combines/fuses several basis systems into a single observed image representation through a local model selection (local-MS) criterion, and derives a MAP estimator for each pixel. This framework overcomes several limitations of existing basis selection methods, and is demonstrated to have superior performance in real image analysis applications.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we formulate a general modeling framework that unifies and extends several state-of-the-art statistical image processing methodologies, including translation-invariant wavelet methods, overcomplete image representations, and best basis selection. At the heart of this framework is a novel hierarchical image model that combines/fuses several basis systems into a single observed image representation through a local model selection (local-MS) criterion, and derives a MAP estimator for each pixel. This framework overcomes several limitations of existing basis selection methods, and is demonstrated to have superior performance in real image analysis applications.
图像的过完备表示和局部最优模型选择
在本文中,我们制定了一个通用的建模框架,该框架统一并扩展了几种最先进的统计图像处理方法,包括平移不变小波方法、过完备图像表示和最佳基选择。该框架的核心是一种新的分层图像模型,该模型通过局部模型选择(local- ms)标准将多个基系统组合/融合到单个观测图像表示中,并为每个像素派生出MAP估计器。该框架克服了现有基选择方法的一些局限性,在实际图像分析应用中具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信