{"title":"Dairy Wastewater Treatment through Synergies of the Biological and Hybrid Membrane: A Systematic Review","authors":"G. Mekuria","doi":"10.3808/jeil.202200087","DOIUrl":null,"url":null,"abstract":"Wastewater treatment techniques have two categories: pre- and post-treatment. Physical, chemical, and biological pretreatment techniques are commonly employed to treat dairy wastewater. Secondly, dairy wastewater post-treatment techniques include physico-chemical and membrane treatment approaches. This review article aims to critically examine and describe pre- and post-treatment techniques for dairy wastewater treatment. The benefits, drawbacks, performance comparisons, and features of each pre - and posttreatment have been extensively investigated. This article uses a systematic literature review method to review and examine other research findings. The results indicate that despite extensive studies on pre- and post-treatment techniques, both have limitations. In this context, aerobic pre-treatment, for example, has high lactose levels, low water capacity, and efficiency concerns. Furthermore, anaerobic pretreatment has issues with lengthy starting times, a high fermentable lactose content, poor residual alkalinity, and fat consumption. In physico-chemical post-treatment, there are high amounts of sludge production and high quantities of chemicals required for pH corrections. Likewise, membrane post-treatment, for instance, has a short membrane lifespan, low selectivity and flux, linear up-scaling, and concentration polarization membrane fouling. Therefore, a synergy of physico-chemical and aerobic, for example, adsorption-aerobic, and synergy of pre-hydrolysis and anaerobic, such as enzymatic hydrolysis-anaerobic treatment, will help to overcome the drawbacks of both anaerobic and aerobic treatment techniques. In conclusion, the most promising techniques for dairy wastewater treatment are combinations of adsorption-aerobic and enzymatic hydrolysis-anaerobic with microfiltration, nanofiltration, reverse osmosis, and ultrafiltration.","PeriodicalId":143718,"journal":{"name":"Journal of Environmental Informatics Letters","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/jeil.202200087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater treatment techniques have two categories: pre- and post-treatment. Physical, chemical, and biological pretreatment techniques are commonly employed to treat dairy wastewater. Secondly, dairy wastewater post-treatment techniques include physico-chemical and membrane treatment approaches. This review article aims to critically examine and describe pre- and post-treatment techniques for dairy wastewater treatment. The benefits, drawbacks, performance comparisons, and features of each pre - and posttreatment have been extensively investigated. This article uses a systematic literature review method to review and examine other research findings. The results indicate that despite extensive studies on pre- and post-treatment techniques, both have limitations. In this context, aerobic pre-treatment, for example, has high lactose levels, low water capacity, and efficiency concerns. Furthermore, anaerobic pretreatment has issues with lengthy starting times, a high fermentable lactose content, poor residual alkalinity, and fat consumption. In physico-chemical post-treatment, there are high amounts of sludge production and high quantities of chemicals required for pH corrections. Likewise, membrane post-treatment, for instance, has a short membrane lifespan, low selectivity and flux, linear up-scaling, and concentration polarization membrane fouling. Therefore, a synergy of physico-chemical and aerobic, for example, adsorption-aerobic, and synergy of pre-hydrolysis and anaerobic, such as enzymatic hydrolysis-anaerobic treatment, will help to overcome the drawbacks of both anaerobic and aerobic treatment techniques. In conclusion, the most promising techniques for dairy wastewater treatment are combinations of adsorption-aerobic and enzymatic hydrolysis-anaerobic with microfiltration, nanofiltration, reverse osmosis, and ultrafiltration.