Boosting Word Frequencies in Authorship Attribution

Maciej Eder
{"title":"Boosting Word Frequencies in Authorship Attribution","authors":"Maciej Eder","doi":"10.48550/arXiv.2211.01289","DOIUrl":null,"url":null,"abstract":"In this paper, I introduce a simple method of computing relative word frequencies for authorship attribution and similar stylometric tasks. Rather than computing relative frequencies as the number of occurrences of a given word divided by the total number of tokens in a text, I argue that a more efficient normalization factor is the total number of relevant tokens only. The notion of relevant words includes synonyms and, usually, a few dozen other words in some ways semantically similar to a word in question. To determine such a semantic background, one of word embedding models can be used. The proposed method outperforms classical most-frequent-word approaches substantially, usually by a few percentage points depending on the input settings.","PeriodicalId":191971,"journal":{"name":"Workshop on Computational Humanities Research","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Humanities Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.01289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, I introduce a simple method of computing relative word frequencies for authorship attribution and similar stylometric tasks. Rather than computing relative frequencies as the number of occurrences of a given word divided by the total number of tokens in a text, I argue that a more efficient normalization factor is the total number of relevant tokens only. The notion of relevant words includes synonyms and, usually, a few dozen other words in some ways semantically similar to a word in question. To determine such a semantic background, one of word embedding models can be used. The proposed method outperforms classical most-frequent-word approaches substantially, usually by a few percentage points depending on the input settings.
在作者归属中提高词频
在本文中,我介绍了一种计算作者归属和类似文体测量任务的相对词频的简单方法。与其用给定单词的出现次数除以文本中标记的总数来计算相对频率,我认为更有效的归一化因子是只使用相关标记的总数。相关词的概念包括同义词,通常还包括其他几十个在某种意义上与有问题的词相似的词。为了确定这样的语义背景,可以使用一种词嵌入模型。所提出的方法大大优于经典的最频繁词方法,通常根据输入设置高出几个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信