A Quantum-Inspired Evolutionary Learning Process to Design Dilation-Erosion Perceptrons for Financial Forecasting

Ricardo de A. Araújo, Adriano Oliveira, S. Soares, S. Meira
{"title":"A Quantum-Inspired Evolutionary Learning Process to Design Dilation-Erosion Perceptrons for Financial Forecasting","authors":"Ricardo de A. Araújo, Adriano Oliveira, S. Soares, S. Meira","doi":"10.21528/LNLM-VOL10-NO3-ART6","DOIUrl":null,"url":null,"abstract":"Financial forecasting problems are rather difficult to be solved due to many complex features present in these time series. Several techniques have been proposed in the literature to solve this kind of problem. However, a dilemma arises from them, known as random walk dilemma, where the forecasts generated show a characteristic one step delay with respect to the real time series data. In this sense, this work presents a quantum-inspired evolutionary learning process to design the dilation-erosion perceptron (DEP) in order to overcome the random walk dilemma for financial forecasting. Furthermore, an experimental analysis is presented using the Dow Jones Industrial Average Index, where five well-known performance metrics and an evaluation function are used to assess forecasting performance.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/LNLM-VOL10-NO3-ART6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Financial forecasting problems are rather difficult to be solved due to many complex features present in these time series. Several techniques have been proposed in the literature to solve this kind of problem. However, a dilemma arises from them, known as random walk dilemma, where the forecasts generated show a characteristic one step delay with respect to the real time series data. In this sense, this work presents a quantum-inspired evolutionary learning process to design the dilation-erosion perceptron (DEP) in order to overcome the random walk dilemma for financial forecasting. Furthermore, an experimental analysis is presented using the Dow Jones Industrial Average Index, where five well-known performance metrics and an evaluation function are used to assess forecasting performance.
基于量子启发的进化学习过程设计用于金融预测的膨胀-侵蚀感知器
由于这些时间序列具有许多复杂的特征,财务预测问题很难解决。文献中提出了几种技术来解决这类问题。然而,从中产生了一个困境,称为随机漫步困境,其中生成的预测相对于实时序列数据显示出一个特征的一步延迟。从这个意义上说,这项工作提出了一个量子启发的进化学习过程来设计膨胀-侵蚀感知器(DEP),以克服金融预测中的随机游走困境。此外,本文还使用道琼斯工业平均指数进行了实验分析,其中使用了五个知名的绩效指标和一个评估函数来评估预测绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信