{"title":"Characterization and Design of Generalized Convolutional Neural Network","authors":"Pan Zhong, Zhengdao Wang","doi":"10.1109/CISS.2019.8693021","DOIUrl":null,"url":null,"abstract":"The group convolution and representation theory give a strong support for generalized convolutional neural network. The generalized convolutional neural network (G-CNN) has been applied to learning problems and achieved the state-of-art performance. But a theoretical support for details of network architecture design is still lacking. In this work, we first analyze the necessary and sufficient condition for a neural network to be group equivariant when the group acts on the sub-domain of input/output. We then analyze the multiple equivariance case. After that, we show that the generalized convolution mapping to a quotient space is a projection of the image of a generalized convolution which maps to the maximum quotient space. This can be used to obtain guidelines for choosing the feature size of hidden layer.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8693021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The group convolution and representation theory give a strong support for generalized convolutional neural network. The generalized convolutional neural network (G-CNN) has been applied to learning problems and achieved the state-of-art performance. But a theoretical support for details of network architecture design is still lacking. In this work, we first analyze the necessary and sufficient condition for a neural network to be group equivariant when the group acts on the sub-domain of input/output. We then analyze the multiple equivariance case. After that, we show that the generalized convolution mapping to a quotient space is a projection of the image of a generalized convolution which maps to the maximum quotient space. This can be used to obtain guidelines for choosing the feature size of hidden layer.