{"title":"RELATIVE GROWTH OF ENTIRE DIRICHLET SERIES WITH DIFFERENT GENERALIZED ORDERS","authors":"M. Sheremeta, O. Mulyava","doi":"10.31861/bmj2021.02.02","DOIUrl":null,"url":null,"abstract":"For entire functions $F$ and $G$ defined by Dirichlet series with exponents increasing to $+\\infty$ formulas are found for the finding the generalized order $\\displaystyle \\varrho_{\\alpha,\\beta}[F]_G = \\varlimsup\\limits_{\\sigma\\to=\\infty} \\frac{\\alpha(M^{-1}_G(M_F(\\sigma)))}{\\beta(\\sigma)}$ and the generalized lower order $\\displaystyle \\lambda_{\\alpha,\\beta}[F]_G=\\varliminf\\limits_{\\sigma\\to+\\infty} \\frac{\\alpha(M^{-1}_G(M_F(\\sigma)))}{\\beta(\\sigma)}$ of $F$ with respect to $G$, where $M_F(\\sigma)=\\sup\\{|F(\\sigma+it)|:\\,t\\in{\\Bbb R}\\}$ and $\\alpha$ and $\\beta$ are positive increasing to $+\\infty$ functions.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2021.02.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For entire functions $F$ and $G$ defined by Dirichlet series with exponents increasing to $+\infty$ formulas are found for the finding the generalized order $\displaystyle \varrho_{\alpha,\beta}[F]_G = \varlimsup\limits_{\sigma\to=\infty} \frac{\alpha(M^{-1}_G(M_F(\sigma)))}{\beta(\sigma)}$ and the generalized lower order $\displaystyle \lambda_{\alpha,\beta}[F]_G=\varliminf\limits_{\sigma\to+\infty} \frac{\alpha(M^{-1}_G(M_F(\sigma)))}{\beta(\sigma)}$ of $F$ with respect to $G$, where $M_F(\sigma)=\sup\{|F(\sigma+it)|:\,t\in{\Bbb R}\}$ and $\alpha$ and $\beta$ are positive increasing to $+\infty$ functions.