Linear Reinforcement Learning with Ball Structure Action Space

Zeyu Jia, Randy Jia, Dhruv Madeka, Dean Phillips Foster
{"title":"Linear Reinforcement Learning with Ball Structure Action Space","authors":"Zeyu Jia, Randy Jia, Dhruv Madeka, Dean Phillips Foster","doi":"10.48550/arXiv.2211.07419","DOIUrl":null,"url":null,"abstract":"We study the problem of Reinforcement Learning (RL) with linear function approximation, i.e. assuming the optimal action-value function is linear in a known $d$-dimensional feature mapping. Unfortunately, however, based on only this assumption, the worst case sample complexity has been shown to be exponential, even under a generative model. Instead of making further assumptions on the MDP or value functions, we assume that our action space is such that there always exist playable actions to explore any direction of the feature space. We formalize this assumption as a ``ball structure'' action space, and show that being able to freely explore the feature space allows for efficient RL. In particular, we propose a sample-efficient RL algorithm (BallRL) that learns an $\\epsilon$-optimal policy using only $\\tilde{O}\\left(\\frac{H^5d^3}{\\epsilon^3}\\right)$ number of trajectories.","PeriodicalId":267197,"journal":{"name":"International Conference on Algorithmic Learning Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithmic Learning Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.07419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the problem of Reinforcement Learning (RL) with linear function approximation, i.e. assuming the optimal action-value function is linear in a known $d$-dimensional feature mapping. Unfortunately, however, based on only this assumption, the worst case sample complexity has been shown to be exponential, even under a generative model. Instead of making further assumptions on the MDP or value functions, we assume that our action space is such that there always exist playable actions to explore any direction of the feature space. We formalize this assumption as a ``ball structure'' action space, and show that being able to freely explore the feature space allows for efficient RL. In particular, we propose a sample-efficient RL algorithm (BallRL) that learns an $\epsilon$-optimal policy using only $\tilde{O}\left(\frac{H^5d^3}{\epsilon^3}\right)$ number of trajectories.
球结构作用空间的线性强化学习
我们研究了线性函数逼近的强化学习(RL)问题,即假设在已知的$d$维特征映射中最优动作值函数是线性的。然而,不幸的是,仅基于这一假设,即使在生成模型下,最坏情况下的样本复杂性也显示为指数。我们不再进一步假设MDP或价值函数,而是假设我们的行动空间总是存在可玩的行动去探索功能空间的任何方向。我们将这一假设形式化为“球结构”动作空间,并表明能够自由地探索特征空间可以实现高效的强化学习。特别地,我们提出了一个样本高效的RL算法(BallRL),它只使用$\tilde{O}\left(\frac{H^5d^3}{\epsilon^3}\right)$个轨迹来学习$\epsilon$ -最优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信