Application of neural networks: a molecular geometry optimization study

M. R. Lemes, C. R. Zacharias, Arnaldo Dal Pino Júnior
{"title":"Application of neural networks: a molecular geometry optimization study","authors":"M. R. Lemes, C. R. Zacharias, Arnaldo Dal Pino Júnior","doi":"10.1109/SBRN.2000.889760","DOIUrl":null,"url":null,"abstract":"Summary form only given. Optimization algorithms are iterative procedures that evolve from guessed starting points (SP) to the desired global minimum. Their performance can be greatly improved, if a neural network (NN) is created to select suitable SP. In this paper we consider the use of trained NN to select possible ground-state geometries for silicon clusters. A genetic algorithm is initial population energy optimization. For convenience, a cluster's geometry is described as a piling up of plane layers of atoms.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Summary form only given. Optimization algorithms are iterative procedures that evolve from guessed starting points (SP) to the desired global minimum. Their performance can be greatly improved, if a neural network (NN) is created to select suitable SP. In this paper we consider the use of trained NN to select possible ground-state geometries for silicon clusters. A genetic algorithm is initial population energy optimization. For convenience, a cluster's geometry is described as a piling up of plane layers of atoms.
神经网络的应用:分子几何优化研究
只提供摘要形式。优化算法是从猜测的起始点(SP)到期望的全局最小值的迭代过程。如果创建一个神经网络(NN)来选择合适的SP,它们的性能可以大大提高。在本文中,我们考虑使用训练好的神经网络来选择硅簇可能的基态几何形状。遗传算法是初始种群能量优化算法。为方便起见,团簇的几何结构被描述为原子平面层的堆积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信