Compatible cluster merging for fuzzy modelling

U. Kaymak, R. Babuška
{"title":"Compatible cluster merging for fuzzy modelling","authors":"U. Kaymak, R. Babuška","doi":"10.1109/FUZZY.1995.409789","DOIUrl":null,"url":null,"abstract":"Making a fuzzy model of a dynamic process requires the tuning of many parameters. Doing this heuristically is tedious and time consuming. Clustering techniques provide an easier way for forming fuzzy model using measurements made on the system. However, the number of clusters and hence the number of rules the fuzzy rule-base must be determined a priori. It is usually not possible to determine beforehand the optimal number of rules in a rule-base. In this paper, a compatible cluster merging algorithm is suggested for finding the \"optimal\" number of rules in a rule base. It is based on the compatible cluster merging algorithm proposed recently. The original compatible cluster merging algorithm has certain undesired properties for fuzzy modelling. Hence, a modification is proposed and a modified compatible cluster merging algorithm is described. The new algorithm combines techniques from the original compatible cluster merging, fuzzy multicriteria decision making and heuristics. Examples are given that show the applicability of the proposed method.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

Abstract

Making a fuzzy model of a dynamic process requires the tuning of many parameters. Doing this heuristically is tedious and time consuming. Clustering techniques provide an easier way for forming fuzzy model using measurements made on the system. However, the number of clusters and hence the number of rules the fuzzy rule-base must be determined a priori. It is usually not possible to determine beforehand the optimal number of rules in a rule-base. In this paper, a compatible cluster merging algorithm is suggested for finding the "optimal" number of rules in a rule base. It is based on the compatible cluster merging algorithm proposed recently. The original compatible cluster merging algorithm has certain undesired properties for fuzzy modelling. Hence, a modification is proposed and a modified compatible cluster merging algorithm is described. The new algorithm combines techniques from the original compatible cluster merging, fuzzy multicriteria decision making and heuristics. Examples are given that show the applicability of the proposed method.<>
兼容聚类合并模糊建模
建立动态过程的模糊模型需要调整许多参数。这种启发式的做法既乏味又耗时。聚类技术提供了一种更简单的方法,通过对系统的测量来形成模糊模型。然而,聚类的数量以及模糊规则库的规则数量必须先验地确定。通常不可能事先确定规则库中规则的最佳数量。本文提出了一种兼容的聚类合并算法,用于在规则库中寻找“最优”规则数。它是基于最近提出的兼容聚类合并算法。原有的兼容聚类合并算法在模糊建模中存在一些不理想的特性。在此基础上,提出了一种改进的兼容聚类合并算法。新算法结合了原有的兼容聚类合并、模糊多准则决策和启发式算法等技术。算例表明了所提方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信