Greedy Approximation of Kernel PCA by Minimizing the Mapping Error

Peng Cheng, W. Li, P. Ogunbona
{"title":"Greedy Approximation of Kernel PCA by Minimizing the Mapping Error","authors":"Peng Cheng, W. Li, P. Ogunbona","doi":"10.1109/DICTA.2009.57","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new kernel PCA (KPCA) speed-up algorithm that aims to find a reduced KPCA to approximate the kernel mapping. The algorithm works by greedily choosing a subset of the training samples that minimizes the mean square error of the kernel mapping between the original KPCA and the reduced KPCA. Experimental results have shown that the proposed algorithm is more efficient in computation and effective with lower mapping errors than previous algorithms.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose a new kernel PCA (KPCA) speed-up algorithm that aims to find a reduced KPCA to approximate the kernel mapping. The algorithm works by greedily choosing a subset of the training samples that minimizes the mean square error of the kernel mapping between the original KPCA and the reduced KPCA. Experimental results have shown that the proposed algorithm is more efficient in computation and effective with lower mapping errors than previous algorithms.
最小化映射误差的核主成分分析贪心逼近
本文提出了一种新的核主成分分析(KPCA)加速算法,该算法旨在找到一个简化的核主成分分析来近似核映射。该算法的工作原理是,贪婪地选择训练样本的一个子集,使原始KPCA和简化后的KPCA之间的核映射的均方误差最小化。实验结果表明,该算法具有较好的计算效率和较低的映射误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信