Iterated numerical homogenization for multi-scale elliptic equations with monotone nonlinearity

Xinliang Liu, Eric T. Chung, Lei Zhang
{"title":"Iterated numerical homogenization for multi-scale elliptic equations with monotone nonlinearity","authors":"Xinliang Liu, Eric T. Chung, Lei Zhang","doi":"10.1137/21m1389900","DOIUrl":null,"url":null,"abstract":"Nonlinear multi-scale problems are ubiquitous in materials science and biology. Complicated interactions between nonlinearities and (nonseparable) multiple scales pose a major challenge for analysis and simulation. In this paper, we study the numerical homogenization for multi-scale elliptic PDEs with monotone nonlinearity, in particular the Leray-Lions problem (a prototypical example is the p-Laplacian equation), where the nonlinearity cannot be parameterized with low dimensional parameters, and the linearization error is non-negligible. We develop the iterated numerical homogenization scheme by combining numerical homogenization methods for linear equations, and the so-called\"quasi-norm\"based iterative approach for monotone nonlinear equation. We propose a residual regularized nonlinear iterative method, and in addition, develop the sparse updating method for the efficient update of coarse spaces. A number of numerical results are presented to complement the analysis and valid the numerical method.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1389900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nonlinear multi-scale problems are ubiquitous in materials science and biology. Complicated interactions between nonlinearities and (nonseparable) multiple scales pose a major challenge for analysis and simulation. In this paper, we study the numerical homogenization for multi-scale elliptic PDEs with monotone nonlinearity, in particular the Leray-Lions problem (a prototypical example is the p-Laplacian equation), where the nonlinearity cannot be parameterized with low dimensional parameters, and the linearization error is non-negligible. We develop the iterated numerical homogenization scheme by combining numerical homogenization methods for linear equations, and the so-called"quasi-norm"based iterative approach for monotone nonlinear equation. We propose a residual regularized nonlinear iterative method, and in addition, develop the sparse updating method for the efficient update of coarse spaces. A number of numerical results are presented to complement the analysis and valid the numerical method.
具有单调非线性的多尺度椭圆方程的迭代数值均匀化
非线性多尺度问题在材料科学和生物学中普遍存在。非线性和(不可分的)多尺度之间复杂的相互作用对分析和模拟提出了重大挑战。本文研究了具有单调非线性的多尺度椭圆偏微分方程的数值均匀化问题,特别是非线性不能用低维参数参数化且线性化误差不可忽略的Leray-Lions问题(典型的例子是p- laplace方程)。将线性方程的数值均匀化方法与单调非线性方程的“拟范数”迭代方法相结合,提出了迭代数值均匀化方案。提出了残差正则化非线性迭代方法,并提出了稀疏更新方法对粗糙空间进行有效更新。给出了一些数值结果来补充分析和验证数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信