Investigation of ant cuticle dataset using image texture analysis

Noah Gardner, John Paul Hellenbrand, Anthony Phan, Haige Zhu, Z. Long, Min Wang, C. Penick, Chih-Cheng Hung
{"title":"Investigation of ant cuticle dataset using image texture analysis","authors":"Noah Gardner, John Paul Hellenbrand, Anthony Phan, Haige Zhu, Z. Long, Min Wang, C. Penick, Chih-Cheng Hung","doi":"10.3934/aci.2022008","DOIUrl":null,"url":null,"abstract":"Ant cuticle texture presumably provides some type of function, and therefore is useful to research for ecological applications and bioinspired designs. In this study, we employ statistical image texture analysis and deep machine learning methods to classify similar ant species based on morphological features. We establish a public database of ant cuticle images for research. We provide a comparative study of the performance of image texture classification and deep machine learning methods on this ant cuticle dataset. Our results show that the deep learning methods give higher accuracy than statistical methods in recognizing ant cuticle textures. Our experiments also reveal that the deep learning networks designed for image texture performs better than the general deep learning networks.","PeriodicalId":414924,"journal":{"name":"Applied Computing and Intelligence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/aci.2022008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ant cuticle texture presumably provides some type of function, and therefore is useful to research for ecological applications and bioinspired designs. In this study, we employ statistical image texture analysis and deep machine learning methods to classify similar ant species based on morphological features. We establish a public database of ant cuticle images for research. We provide a comparative study of the performance of image texture classification and deep machine learning methods on this ant cuticle dataset. Our results show that the deep learning methods give higher accuracy than statistical methods in recognizing ant cuticle textures. Our experiments also reveal that the deep learning networks designed for image texture performs better than the general deep learning networks.
基于图像纹理分析的蚂蚁角质层数据研究
蚂蚁角质层的结构可能提供了某种类型的功能,因此对生态应用和生物灵感设计的研究是有用的。在本研究中,我们采用统计图像纹理分析和深度机器学习方法,基于形态学特征对相似蚂蚁物种进行分类。我们建立了蚂蚁角质层图像的公共数据库,用于研究。我们对图像纹理分类和深度机器学习方法在蚂蚁角质层数据集上的性能进行了比较研究。我们的研究结果表明,深度学习方法在识别蚂蚁角质层纹理方面比统计方法具有更高的准确性。我们的实验还表明,为图像纹理设计的深度学习网络比一般的深度学习网络性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信