Large scale visual-based event matching

Mohamed Riadh Trad, A. Joly, N. Boujemaa
{"title":"Large scale visual-based event matching","authors":"Mohamed Riadh Trad, A. Joly, N. Boujemaa","doi":"10.1145/1991996.1992049","DOIUrl":null,"url":null,"abstract":"Organizing media according to real-life events is attracting interest in the multimedia community. Event-centric indexing approaches are very promising for discovering more complex relationships between data. In this paper we introduce a new visual-based method for retrieving events in photo collections, typically in the context of User Generated Contents. Given a query event record, represented by a set of photos, our method aims to retrieve other records of the same event, typically generated by distinct users. Similarly to what is done in state-of-the-art object retrieval systems, we propose a two-stage strategy combining an efficient visual indexing model with a spatiotemporal verification re-ranking stage to improve query performance. For efficiency and scalability concerns, we implemented the proposed method according to the MapReduce programming model using Multi-Probe Locality Sensitive Hashing. Experiments were conducted on LastFM-Flickr dataset for distinct scenarios, including event retrieval, automatic annotation and tags suggestion. As one result, our method is able to suggest the correct event tag over 5 suggestions with a 72% success rate.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Organizing media according to real-life events is attracting interest in the multimedia community. Event-centric indexing approaches are very promising for discovering more complex relationships between data. In this paper we introduce a new visual-based method for retrieving events in photo collections, typically in the context of User Generated Contents. Given a query event record, represented by a set of photos, our method aims to retrieve other records of the same event, typically generated by distinct users. Similarly to what is done in state-of-the-art object retrieval systems, we propose a two-stage strategy combining an efficient visual indexing model with a spatiotemporal verification re-ranking stage to improve query performance. For efficiency and scalability concerns, we implemented the proposed method according to the MapReduce programming model using Multi-Probe Locality Sensitive Hashing. Experiments were conducted on LastFM-Flickr dataset for distinct scenarios, including event retrieval, automatic annotation and tags suggestion. As one result, our method is able to suggest the correct event tag over 5 suggestions with a 72% success rate.
大规模基于视觉的事件匹配
根据现实事件组织媒体正在吸引多媒体社区的兴趣。以事件为中心的索引方法对于发现数据之间更复杂的关系非常有希望。在本文中,我们介绍了一种新的基于视觉的方法来检索照片集中的事件,通常是在用户生成内容的上下文中。给定一个由一组照片表示的查询事件记录,我们的方法旨在检索同一事件的其他记录,这些记录通常由不同的用户生成。与最先进的对象检索系统类似,我们提出了一种两阶段策略,将高效的可视化索引模型与时空验证重新排序阶段相结合,以提高查询性能。考虑到效率和可扩展性,我们根据MapReduce编程模型使用多探针局部敏感哈希实现了所提出的方法。在LastFM-Flickr数据集上进行了不同场景的实验,包括事件检索、自动标注和标签建议。结果,我们的方法能够在5个建议中建议正确的事件标签,成功率为72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信