Y. Shan, R. I. McKay, R. Baxter, H. Abbass, D. Essam, N. X. Hoai
{"title":"Grammar model-based program evolution","authors":"Y. Shan, R. I. McKay, R. Baxter, H. Abbass, D. Essam, N. X. Hoai","doi":"10.1109/CEC.2004.1330895","DOIUrl":null,"url":null,"abstract":"In evolutionary computation, genetic operators, such as mutation and crossover, are employed to perturb individuals to generate the next population. However these fixed, problem independent genetic operators may destroy the sub-solution, usually called building blocks, instead of discovering and preserving them. One way to overcome this problem is to build a model based on the good individuals, and sample this model to obtain the next population. There is a wide range of such work in genetic algorithms; but because of the complexity of the genetic programming (GP) tree representation, little work of this kind has been done in GP. In this paper, we propose a new method, grammar model-based program evolution (GMPE) to evolved GP program. We replace common GP genetic operators with a probabilistic context-free grammar (SCFG). In each generation, an SCFG is learnt, and a new population is generated by sampling this SCFG model. On two benchmark problems we have studied, GMPE significantly outperforms conventional GP, learning faster and more reliably.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104
Abstract
In evolutionary computation, genetic operators, such as mutation and crossover, are employed to perturb individuals to generate the next population. However these fixed, problem independent genetic operators may destroy the sub-solution, usually called building blocks, instead of discovering and preserving them. One way to overcome this problem is to build a model based on the good individuals, and sample this model to obtain the next population. There is a wide range of such work in genetic algorithms; but because of the complexity of the genetic programming (GP) tree representation, little work of this kind has been done in GP. In this paper, we propose a new method, grammar model-based program evolution (GMPE) to evolved GP program. We replace common GP genetic operators with a probabilistic context-free grammar (SCFG). In each generation, an SCFG is learnt, and a new population is generated by sampling this SCFG model. On two benchmark problems we have studied, GMPE significantly outperforms conventional GP, learning faster and more reliably.