Toward Auto-tuned Krylov Basis Computation for Different Sparse Matrix Formats and Interconnects on GPU Clusters

Langshi Chen, Serge G. Petition
{"title":"Toward Auto-tuned Krylov Basis Computation for Different Sparse Matrix Formats and Interconnects on GPU Clusters","authors":"Langshi Chen, Serge G. Petition","doi":"10.1109/CLUSTER.2015.153","DOIUrl":null,"url":null,"abstract":"Krylov subspace methods (KSMs) are widely used in solving large-scale sparse linear problems. The orthogonalization process in methods like GMRES would consume a majority of the time. Since modern manycore architecture based accelerators have provided great horsepowers for computations,communication overheads remain a bottleneck, especially in clusters with a great number of nodes. The HA-PACS/TCA of Tsukuba University is a CPU-GPU hybrid cluster equipped with different interconnects for communications among GPUs. We testa group of Krylov basis computation methods with different sparse matrices and interconnects on HA-PACS/TCA. Results show that an auto-tuning scheme is required to deal with various types of matrices.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Krylov subspace methods (KSMs) are widely used in solving large-scale sparse linear problems. The orthogonalization process in methods like GMRES would consume a majority of the time. Since modern manycore architecture based accelerators have provided great horsepowers for computations,communication overheads remain a bottleneck, especially in clusters with a great number of nodes. The HA-PACS/TCA of Tsukuba University is a CPU-GPU hybrid cluster equipped with different interconnects for communications among GPUs. We testa group of Krylov basis computation methods with different sparse matrices and interconnects on HA-PACS/TCA. Results show that an auto-tuning scheme is required to deal with various types of matrices.
GPU集群上不同稀疏矩阵格式和互连的自调Krylov基计算
Krylov子空间方法在求解大规模稀疏线性问题中得到了广泛的应用。在GMRES等方法中,正交化过程将消耗大部分时间。由于基于现代多核架构的加速器为计算提供了巨大的动力,通信开销仍然是一个瓶颈,特别是在具有大量节点的集群中。筑波大学的HA-PACS/TCA是一个CPU-GPU混合集群,配备了不同的互连方式,用于gpu之间的通信。在HA-PACS/TCA上测试了一组具有不同稀疏矩阵和互连方式的Krylov基计算方法。结果表明,需要一种自动调优方案来处理各种类型的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信