Complex Motion Detection Based on Channel State Information and LSTM-RNN

Pengyu Zhang, Zhuoran Su, Zehua Dong, K. Pahlavan
{"title":"Complex Motion Detection Based on Channel State Information and LSTM-RNN","authors":"Pengyu Zhang, Zhuoran Su, Zehua Dong, K. Pahlavan","doi":"10.1109/CCWC47524.2020.9031214","DOIUrl":null,"url":null,"abstract":"With the development of smart devices, human motion detection has been widely used for applications like entertainment and healthcare. Existing RF signal-based systems mostly focus on detecting relative strenuous actions and classifying them by Machine Learning (ML) method, like Support Vector Machine (SVM) and Random Forest (RF). This paper proposes a system that can detect and classify arm motions by leveraging the $W$ iFi OFDM signal. Instead of widely used SVM, we choose the Long Short-Term Memory (LSTM) algorithm to classify data from Channel State Information (CSI). The preliminary result shows that our systems achieve an average accuracy of 96% with 5 states of arm movement.","PeriodicalId":161209,"journal":{"name":"2020 10th Annual Computing and Communication Workshop and Conference (CCWC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th Annual Computing and Communication Workshop and Conference (CCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCWC47524.2020.9031214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the development of smart devices, human motion detection has been widely used for applications like entertainment and healthcare. Existing RF signal-based systems mostly focus on detecting relative strenuous actions and classifying them by Machine Learning (ML) method, like Support Vector Machine (SVM) and Random Forest (RF). This paper proposes a system that can detect and classify arm motions by leveraging the $W$ iFi OFDM signal. Instead of widely used SVM, we choose the Long Short-Term Memory (LSTM) algorithm to classify data from Channel State Information (CSI). The preliminary result shows that our systems achieve an average accuracy of 96% with 5 states of arm movement.
基于通道状态信息和LSTM-RNN的复杂运动检测
随着智能设备的发展,人体运动检测已广泛应用于娱乐、医疗等领域。现有的基于射频信号的系统主要是通过支持向量机(SVM)和随机森林(RF)等机器学习(ML)方法来检测相对剧烈的动作并对其进行分类。本文提出了一种利用wifi OFDM信号对手臂运动进行检测和分类的系统。我们选择长短期记忆(LSTM)算法来代替目前广泛使用的SVM算法对信道状态信息(CSI)中的数据进行分类。初步结果表明,在手臂运动的5种状态下,系统的平均准确率达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信