Biresh Kumar Joardar, J. Doppa, P. Pande, Diana Marculescu, R. Marculescu
{"title":"Hybrid On-Chip Communication Architectures for Heterogeneous Manycore Systems","authors":"Biresh Kumar Joardar, J. Doppa, P. Pande, Diana Marculescu, R. Marculescu","doi":"10.1145/3240765.3243480","DOIUrl":null,"url":null,"abstract":"The widespread adoption of big data has led to the search for highperformance and low-power computational platforms. Emerging heterogeneous manycore processing platforms consisting of CPU and GPU cores along with various types of accelerators offer power and area-efficient trade-offs for running these applications. However, heterogeneous manycore architectures need to satisfy the communication and memory requirements of the diverse computing elements that conventional Network-on-Chip (NoC) architectures are unable to handle effectively. Further, with increasing system sizes and level of heterogeneity, it becomes difficult to quickly explore the large design space and establish the appropriate design trade-offs. To address these challenges, machine learning-inspired heterogeneous manycore system design is a promising research direction to pursue. In this paper, we highlight various salient features of heterogeneous manycore architectures enabled by emerging interconnect technologies and machine learning techniques.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3243480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The widespread adoption of big data has led to the search for highperformance and low-power computational platforms. Emerging heterogeneous manycore processing platforms consisting of CPU and GPU cores along with various types of accelerators offer power and area-efficient trade-offs for running these applications. However, heterogeneous manycore architectures need to satisfy the communication and memory requirements of the diverse computing elements that conventional Network-on-Chip (NoC) architectures are unable to handle effectively. Further, with increasing system sizes and level of heterogeneity, it becomes difficult to quickly explore the large design space and establish the appropriate design trade-offs. To address these challenges, machine learning-inspired heterogeneous manycore system design is a promising research direction to pursue. In this paper, we highlight various salient features of heterogeneous manycore architectures enabled by emerging interconnect technologies and machine learning techniques.