Point Correspondence Validation under Unknown Radial Distortion

William X. Liu, Tat-Jun Chin, G. Carneiro, D. Suter
{"title":"Point Correspondence Validation under Unknown Radial Distortion","authors":"William X. Liu, Tat-Jun Chin, G. Carneiro, D. Suter","doi":"10.1109/DICTA.2013.6691513","DOIUrl":null,"url":null,"abstract":"Standard two-view epipolar geometry assumes that images are taken using pinhole cameras. Real cameras, however, approximate ideal pinhole cameras using lenses and apertures. This leads to radial distortion effects in images that are not characterisable by the standard epipolar geometry model. The existence of radial distortion severely impacts the efficacy of point correspondence validation based on the epipolar constraint. Many previous works deal with radial distortion by augment- ing the epipolar geometry model (with additional parameters such as distortion coefficients and centre of distortion) to enable the modelling of radial distortion effects. Indirectly, this assumes that an accurate model of the radial distortion is known. In this paper, we take a different approach: we view radial distortion as a violation to the basic epipolar geometry equation. Instead of striving to model radial distortion, we adjust the epipolar geometry to account for the distortion effects. This adjustment is performed via moving least squares (MLS) surface approxi- mation, which we extend to allow for projective estimation. We also combine M-estimators with MLS to allow robust matching of interest points under severe radial distortion. Compared to previous works, our method is much simpler and involves just solving linear subproblems. It also exhibits a higher tolerance in cases where the exact model of radial distortion is unknown.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Standard two-view epipolar geometry assumes that images are taken using pinhole cameras. Real cameras, however, approximate ideal pinhole cameras using lenses and apertures. This leads to radial distortion effects in images that are not characterisable by the standard epipolar geometry model. The existence of radial distortion severely impacts the efficacy of point correspondence validation based on the epipolar constraint. Many previous works deal with radial distortion by augment- ing the epipolar geometry model (with additional parameters such as distortion coefficients and centre of distortion) to enable the modelling of radial distortion effects. Indirectly, this assumes that an accurate model of the radial distortion is known. In this paper, we take a different approach: we view radial distortion as a violation to the basic epipolar geometry equation. Instead of striving to model radial distortion, we adjust the epipolar geometry to account for the distortion effects. This adjustment is performed via moving least squares (MLS) surface approxi- mation, which we extend to allow for projective estimation. We also combine M-estimators with MLS to allow robust matching of interest points under severe radial distortion. Compared to previous works, our method is much simpler and involves just solving linear subproblems. It also exhibits a higher tolerance in cases where the exact model of radial distortion is unknown.
未知径向畸变下的点对应验证
标准的双视图极几何假设图像是使用针孔相机拍摄的。然而,真正的相机,近似理想的针孔相机使用的镜头和光圈。这将导致图像中的径向畸变效应,而不是标准极几何模型的特征。径向畸变的存在严重影响了基于近极约束的点对应验证的有效性。许多以前的工作处理径向畸变通过增加极几何模型(与额外的参数,如畸变系数和畸变中心),使径向畸变效应的建模。间接地,这假定了径向畸变的精确模型是已知的。在本文中,我们采取了不同的方法:我们将径向畸变视为对基本极几何方程的违反。而不是努力建模径向畸变,我们调整极几何考虑畸变的影响。这种调整是通过移动最小二乘(MLS)表面近似执行的,我们将其扩展到允许投影估计。我们还将m估计器与MLS相结合,以允许在严重径向畸变下对兴趣点进行鲁棒匹配。与以前的工作相比,我们的方法简单得多,只涉及求解线性子问题。在径向变形的确切模型未知的情况下,它也表现出更高的容忍度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信