Comparative Analysis of ControlGAN and ControlGAN-GP Models based Text-to-Image Synthesis

Dikshya Surabhi Patra, Subhransu Padhee
{"title":"Comparative Analysis of ControlGAN and ControlGAN-GP Models based Text-to-Image Synthesis","authors":"Dikshya Surabhi Patra, Subhransu Padhee","doi":"10.1109/OCIT56763.2022.00110","DOIUrl":null,"url":null,"abstract":"This manuscript discuss the concept of Text-to-Image synthesis using machine learning methods. For machine learning purpose gradient adversarial network is used. Two different gradient adversarial network namely ControlGAN and ControlGAN-Gradient penalty method are used for the above mentioned task. The inclusion of Gradient-penalty in ControlGAN improves the convergence of the model which is evident from the performance matrices of the system. Microsoft COCO dataset is used for simulation and result validation purposes.","PeriodicalId":425541,"journal":{"name":"2022 OITS International Conference on Information Technology (OCIT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 OITS International Conference on Information Technology (OCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCIT56763.2022.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript discuss the concept of Text-to-Image synthesis using machine learning methods. For machine learning purpose gradient adversarial network is used. Two different gradient adversarial network namely ControlGAN and ControlGAN-Gradient penalty method are used for the above mentioned task. The inclusion of Gradient-penalty in ControlGAN improves the convergence of the model which is evident from the performance matrices of the system. Microsoft COCO dataset is used for simulation and result validation purposes.
基于文本到图像合成的ControlGAN和ControlGAN- gp模型的比较分析
本文讨论了使用机器学习方法的文本到图像合成的概念。对于机器学习目的,使用梯度对抗网络。针对上述任务,采用了两种不同的梯度对抗网络ControlGAN和ControlGAN-梯度惩罚方法。从系统的性能矩阵可以看出,在ControlGAN中加入梯度惩罚提高了模型的收敛性。Microsoft COCO数据集用于模拟和结果验证目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信