António A. C. Vieira, L. Dias, M. Y. Santos, G. Pereira, J. A. Oliveira
{"title":"Real-Time Supply Chain Simulation: A Big Data-Driven Approach","authors":"António A. C. Vieira, L. Dias, M. Y. Santos, G. Pereira, J. A. Oliveira","doi":"10.1109/WSC40007.2019.9004717","DOIUrl":null,"url":null,"abstract":"Simulation of Supply Chains comprises huge amounts of data, resulting in numerous entities flowing in the model. These networks are highly dynamic systems, where entities’ relationships and other elements evolve with time, paving the way for real-time Supply Chain decision-support tools capable of using real data. In light of this, a solution comprising of a Big Data Warehouse to store relevant data and a simulation model of an automotive plant, are being developed. The purpose of this paper is to address the modelling approach, which allowed the simulation model to automatically adapt to the data stored in a Big Data Warehouse and thus adapt to new scenarios without manual intervention. The main characteristics of the conceived solution were demonstrated, with emphasis to the real-time and the ability to allow the model to load the state of the system from the Big Data Warehouse.","PeriodicalId":127025,"journal":{"name":"2019 Winter Simulation Conference (WSC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC40007.2019.9004717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Simulation of Supply Chains comprises huge amounts of data, resulting in numerous entities flowing in the model. These networks are highly dynamic systems, where entities’ relationships and other elements evolve with time, paving the way for real-time Supply Chain decision-support tools capable of using real data. In light of this, a solution comprising of a Big Data Warehouse to store relevant data and a simulation model of an automotive plant, are being developed. The purpose of this paper is to address the modelling approach, which allowed the simulation model to automatically adapt to the data stored in a Big Data Warehouse and thus adapt to new scenarios without manual intervention. The main characteristics of the conceived solution were demonstrated, with emphasis to the real-time and the ability to allow the model to load the state of the system from the Big Data Warehouse.